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Abstract

   Game theoretical incentive problem in the framework
of the fuzzy principal-agent model is considered and
optimal incentive schemes are constructed. The
guaranteed efficiency of management under fuzzy
uncertainty is shown to be lower than the deterministic
one and decreased with the growth of uncertainty.

1  Introduction

   Consider the active system which consists of the
management body-principal and the economic object -
agent. Both, the principal and the agent have their own
interests, which are reflected by their goal functions. In
this game - theoretical framework the incentive problem
is usually formulated as following: find feasible control
variables (incentive function), which will induce the
agent to undertake actions, which are the most
preferable from principal's point of view [1,2].
   We distinguish deterministic incentive problems
(when all essential information about all the players,
their goal functions, feasible sets and about the
environment is common knowledge) and incentive
problems under uncertainty [2]. In the latter case
uncertainty may arise due to the lack of information
about the state of nature (theory of contracts [3-5,10]),
asymmetric information about players preferences
(implementation theory [7]) and so on. As there exist
hundreds of papers on incentives under interval and
stochastic uncertainty, the more so it seems rather
surprising that fuzzy incentive problems have not so far
attracted enough attention of scientists (exception is the
attempt to generalize classical theory of teams [6] to the
case of the fuzzy environment [8]). Therefore this paper
is devoted to the exploration of incentives under fuzzy
uncertainty. Solution of the incentive problem implies
the search of the optimal incentive scheme and

investigation of its properties: coordinatability,
nonmanipulability, dependence on information,
uncertainty, etc.

2  Deterministic incentive problem

   Consider the active system, which consists of the
principle and one agent. Agent's strategy is the choice
of action y∈A, principal's strategy is the choice of
incentive function (penalty function)
χ(y)∈ M = { χ(y): 0 ≤ χ(y) ≤ C}.
  When the action y is chosen (which in the
deterministic model coincides with the output z ∈ A0,
A0 = A), the agent's income is h(y), while principal's
income is H(y). Thus goal functions are:
   F(y) = H(y),                                                             (1)
   f(y) = h(y) - χ(y)                                                      (2)
   It is worth noting that in the theory of contracts the
penalty function is usually added to principal's income.
Let h(⋅) be quasi-singlepeaked function [2] with a finite
peak y’=arg max y∈A h(y) and h(y’) < +∞. Define the set
of the implementable actions P(χ) [2]:
   P(χ) = Arg maxy∈A  f(y)                                            (3)
and denote P = ∪χ∈M P(χ). Then the efficiency
(guaranteed efficiency) of management is given by:
   K0    = maxχ∈M  maxy∈P(χ) H(y);
   Kg

0 = maxχ∈M min y∈P(χ) H(y).                                   (4)
   Maximum over the set of implementable actions is
adequate if  the hypothesis of agent's benevolence (HB)
towards the  principal  is valid [1,2]. Let

x- = min {x ∈X:  h(x) ≥ h(y’) - C },
x+ = max { x ∈X:  h(x) ≥ h(y’) - C  },

                 C, y < x
   χc(x,y) =                                                                 (5)
                    0, y ≤ x

                    C - h(y’) + h(y),  y ∈ [x-,x+]
   χk(x,y) =                                                                 (6)
                    0,  y ∉ [x-,x+]



The jump penalty function (5) (C-type) and
compensative penalty function (6) (K-type) are optimal
in the considered model.
   Theorem 1. i) ∀ χ ∈ M   P(χ) ⊆ P =[x-,x+];
   ii) P(χc) = ∪x∈A P(χc(x,⋅))  = P(χk) =[x-,x+];
   iii) K0 = maxx∈P H ( x ).
   It follows from the theorem 1, that C- and K-type
penalty functions are characterized by the largest sets of
implementable actions. Moreover, other optimal
incentive schemes lie "between" them [2].

3  Fuzzy incentive problem

   Below we describe the generalization of the
deterministic incentive problem to the case of the fuzzy
uncertainty about internal an external parameters of the
system. The information is assumed to be symmetric.

3.1  Internal fuzzy uncertainty

   Let agent's income function be fuzzy: h: A × ℜ1→
[0,1]. If the penalties are unfuzzy, then according to the
generalization principle [11] agents goal function f is
given by
   h ( y, u + χ(y) ).                                                       (7)
   Two feasible actions are compared by the following
fuzzy preference relation (FPR) [9]:
µf (y1,y2)=supt≥zmin{h(y1,t+χ(y1)), h(y2, z+χ(y2)).      (8)
The degree of certain alternative's  x∈A  undominance
is determined as
µf

UD(x)=1 - supy∈A [supt≥zmin{ h (y,t+χ(y)), h (x,z+χ(x))}
   - supz≥t  min { h (x,z+χ(x)), h (y,t+χ(y))} ].             (9)
   Rational choice of the agent is assumed to belong to
the set of the maximally undominated alternatives  [11].
Let ∀ y∈ A h(y,u) are normal functions [9].
   Lemma 2. If the pair (y0 ,u0) is a solution of the
following unfuzzy mathematical programming problem:

     u → max
    h (y, u+χc(x,y)) = 1,                                             (10)
     u ∈ ℜ1

then y0  is unfuzzy undominated action.
   It is obvious that (10) covers all the unfuzzy
undominated actions as if h is 1-normal then there are
no unfuzzy undominated actions, which satisfy (10).
Lemma 2 allows to define constructively the choice of
the agent with the given penalty function. Note, that
decreasing the uncertainty (going over to the
deterministic model) the set of unfuzzy undominated
alternatives coincides with the set of implementable
actions.
   Let h(y) be some unfuzzy income function. Fuzzy
income function h(y,u) is coordinated with h(y), iff:
∀ y ∈ A
   1) h ( y, h(y) ) = 1;

   2) ∀ u1 , u2 :  u1 ≤  u2 ≤  h(y)   h(y,u1) ≤ h(y,u2);
   3) ∀ u1 , u2 : h(y) ≤  u1 ≤  u2    h(y,u1) ≥ h(y,u2)..
   Fuzzy income function which is coordinated with the
unfuzzy quasi-singlepeaked income function is also
referred to as quasi- singlepeaked.
   Theorem 3. If the fuzzy income function is quasi-
singlepeaked, then C-type incentive function is optimal.
   Define Q(x) = { y∈A : (y, f(x,y)) - satisfies (10) },
x∈A. The set of implementable actions is Q =∪x∈P Q(x).
   Theorem 4. i) Guaranteed efficiency in the active
system with quasi-singlepeaked fuzzy income function
does not exceed the deterministic one.
   ii) If the HB is valid then the efficiency in the active
system with quasi-singlepeaked fuzzy income function
is greater then deterministic one.
   Corollary 5. If h(y,u) satisfies: ∀ y ∈ A h(y,u)=1 iff
u=h(y) and h(y,u) is coordinated with this quasi-
singlepeaked income function then the efficiency in the
active system with quasi-singlepeaked fuzzy income
function equals the deterministic one.
   Let us introduce the criterion for the comparison of
fuzzy uncertainties in two active systems which differ
only by fuzzy income functions of the agents. Assume
that h1(y,u) and h2(y,u) are two fuzzy income functions,
coordinated with the same unfuzzy quasi-singlepeaked
income function h(y). The first active system is
characterized by lower uncertainty if
   ∀ y ∈ A, ∀ u ∈ ℜ1 h1(y,u)  ≤ h2(y,u).                      (11)
   Theorem 6. i) Guaranteed efficiency does not
increase with the growth of uncertainty in the active
system with quasi-singlepeaked fuzzy income function.
   ii) If the HB is valid then the efficiency increases with
the growth of uncertainty in the active quasi-
singlepeaked fuzzy income function .

3.2. External fuzzy uncertainty

   Consider the model with external uncertainty, where
agent's action jointly with the state of nature θ ∈ Ω
determines the output z ∈ A0 , z = z(y, θ ) (compare this
model with the approaches of the theory of contracts [3-
5]). Principal's goal function Φ(y) depends on the
agent's actions, while agent's goal function
    f(z)=h(z)-χ(z)                                                         (12)
depends on the output, which is observed by the
principal (agent's action is unobservable to the
principal). Suppose that the principal and the agent has
the same fuzzy information about the state of nature:
P: A0 × A → [0,1]. Agent's goal function (12) and
information function P induce on the set of feasible
actions the following FPR R  [9]:
   µR (y1, y2 ) = supz.x∈A min[P(x,y1),P(z,y2),µf (x,z)].  (13)
The degree of x∈ A undominance equals
   µR 

UD(x ) = 1-supy∈A[supz,t∈A: f(z) ≥ f(t)  min{P(z,y),P(t,x)}
-



                         -   sup z,t∈A: f(t) ≥ f(z)   min { P(z,y), P(t,x) }
   Rational choice of the agent belongs to the set of
maximally undominated actions AUD  (which maximize
(14)). As the set of undominated actions depends on the
incentive scheme, then P(χ) = AUD (χ).
   Assume that A = A0 is a closed interval inℜ1; fuzzy
sets P(z,y) are 1-normal (i.e. ∀ y∈A supz∈A P(z,y)=1
and ∀ z∈ A  ∃ y∈ A:  P(z,y) = 1) and P is upper
semicontinous.
 Application of (14) for the calculation of the
undominance degree is rather complex. The result of
the following lemma simplifies the analysis.
   Lemma 7. If (z0 ,y0 ) is a solution of the following
unfuzzy mathematical programming problem:
    f(z) → max,
   P(z,y)=1,
    y∈A, z∈A,
then µR 

UD(y0) = 1, i.e. y0 - unfuzzy undominated action.
   In accordance with the introduced assumptions the set
of unfuzzy undominated actions is not empty. If C-type
penalty function is used then maximum of (12) may be
achieved only on the interval [x-,x+] (see Th.1). Choose
some x∈[x- ,x+] and define
   Q ( x ) = { y ∈ A: P(x,y) = 1 }.
   Lemma 8. If the HB is valid then for any x ∈ P and
for any y ∈ Q(x) there exists incentive scheme χ∈M
(namely, χc), such that the action y belongs to the set
unfuzzy undominated actions.
   Lemma 9. If the HB is valid then

 S = ∪χ∈M P(χ) = ∪x∈P  Q (x);
if HB is not valid then

S = ∪x∈P  min { y∈ A:  y∈ Q ( x ) }.
  Theorem 10. The solution of the incentive problem in
the active system with external fuzzy uncertainty
coincides with the solution of the following problem:

Φ(x)→ maxx∈S

   Corollary 11. For any incentive scheme χ ∈ M there
exists C-type incentive scheme of the same efficiency.
   Thus, when solving the incentive problem in the
active system with external fuzzy uncertainty, one can
restrict his attention to jump penalty functions. Denote
K and Kg - efficiency and guaranteed efficiency of
management.
   Theorem 12. Kg ≤ K0

g, K ≥ K0.
  Consider two active systems which differs only in
fuzzy information functions P1(z,y) and P2(z,y).  The
uncertainty is lower in the first system if ∀ y ∈ A, ∀ z
∈ A0 P1(z,y) ≤ P2(z,y). Denote K1 and K2 corresponding
efficiencies.
   Theorem 13. K1

g  ≥  K2
g, K1 ≤  K2.

   Results of theorems 12 and 13 confirm the intuitive
understanding of the uncertainty role: the efficiency
(guaranteed) of management under uncertainty does not
exceed deterministic one and decreases with the growth

of uncertainty. This result is also valid  for the
guaranteed efficiency of management in most of the
active systems, which operate under intreval and
stochastic uncertainty [2,9].

4  Conclusion

   Thus we proved that C-type incentive functions,
which are optimal in deterministic case [1,2], are also
optimal in most systems with fuzzy uncertainty. The
result on the uncertainty influence on the management
efficiency (the guaranteed efficiency of management
under fuzzy uncertainty is lower than the deterministic
one and decreases with the growth of uncertainty)
corresponds to the common sense [9]. Moreover,
exploration of the problems lead to some nontrivial
results. For example, implying the HB to be valid, the
management efficiency increases with the growth of the
uncertainty.
   We hope that further development and deeper
exploration of incentives in fuzzy active systems will
allow to create a unified incentive theory, which will
embrace the active systems theory, the theory of
contracts, the implementation theory, etc.
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