
 
 
 
 
 
 
 
 

FUZZY INCENTIVE PROBLEM 
 

V.N.Burkov, D.A.Novikov 
 
 

(Institute of control sciences, Profsojuznaya st., 65, Moscow, 117806, Russia, 
phone: +(095)3347900, fax: +(095)3348911,e-mail: vlab@ipu.rssi.ru, nov@ipu.rssi.ru) 
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1. INTRODUCTION 
 

Incentive problems for the organisations, which operate 
under uncertainty, are studied in numerous papers on the 
theory of active systems (Burkov and Enaleev, 1994; 
Burkov and Novikov, 1994; Burkov and Novikov, 1996), 
the theory of contracts (Grossman and Hart, 1983; Hart and 
Holmstrom, 1987; Hart, 1983) and other branches of 
management science. In accordance with the classification, 
introduced in (Novikov, 1997a), one should distinguish 
interval, stochastic and fuzzy uncertainty. In game-
theoretical models under the interval uncertainty players 
posses information only about the set of feasible values of 
uncertain parameters, under the stochastic uncertainty the 
probability distribution is available, under the fuzzy 
uncertainty - the membership function. Till nowadays the 
least case has not attracted proper attention of operation 
researchers (exceptions are Novikov, 1997b; Novikov 
1997c)), therefore this paper is devoted to the solution of 
the incentive problem for the agency under fuzzy external 
uncertainty, i.e. - uncertainty towards the state of nature. It 
is worth noting that the problem formulation is similar to 
the analogous problem of the contracts' theory (Hart and 
Holmstrom, 1987). 

2. THE MODEL OF THE ORGANIZATION 
 

Consider the organisation, which consists of the principal 
and the agent. Agent's strategy is the choice of action y ∈ A. 
The action, jointly with the state of nature Θ ∈ Ω, leads to 
the output z ∈ A0, which is determined by the 
"technological" function: z = z(y, Θ). Suppose that agent's 
goal function f(z) is: 
 

f(z) = h(z(y,Θ)) - χ(z(y,Θ))                     (1) 
 

the difference between his income h(z) and the penalties 
χ(z) ∈ M, chosen by the principal. Principal's goal function 
coincides with his income H(y), defined on the set of 
feasible actions. Note, that the theory of contracts manages 
with the inverse representation - "incentives minus costs". 
Under the assumptions, introduced below, both descriptions 
are equivalent. Moreover, the technic of the optimal penalty 
function design may be efficiently applied for the case when 
the penalties are added to principal's income (or the 
incentives are subtracted from his income). 

 
The sequence of operation is the following: the principal 
reveals to the agent the penalty function, then the agent 
chooses his action, which is unobservable to the principal as 
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well as the state of nature is unobservable until the 
strategies of both players are chosen, then the output is 
observed. 

 
By contrast to the theory of contracts (when the probability 
distribution of the state of nature is considered to be 
common knowledge), it is assumed that both the principal 
and the agent have some fuzzy information about the state 
of nature (see the details below). 

 
Introduce the following assumptions. Let SP′  be the class 
of real value upper semi-continuous functions q(x), defined 
on ℜ1, such that there exist r- , r +  ∈  ℜ1 ( the possibility of      
r- = r+ = r,  r - = - ∞ or r+ = +∞ is not excluded) and q(x) 
does not decrease if x ≤ r-, is constant if x ∈ [r-, r+] (q (r±) 
< +∞) and does not increase if x ≥ r+. Functions, satisfying 
this conditions are referred to as quasi-singlepeaked. 

 
A.1. A0 = A = ℜ1. 

 
A.2. χ(⋅) - nonnegative uniformly upper-limited: 
 

0 ≤ χ(x, y) ≤ C < +∞, ∀ y ∈ A 
 
piecewise-continuous function. 

 
A.3. h(⋅), H(⋅) ∈ SP′. 

 
To define the rational choice of the players, one should 
introduce the uncertainty remotion procedure. Suppose that 
the principal and the agent have the same fuzzy information 
P~ (z, y): A0 × A → [0, 1] about the state of nature: P~ (z, y) 

is the membership function of the output z ∈ A0, which 
parametrically depends on agent's action y ∈ A (if the fuzzy 
information P~ Ω(Θ) about Θ ∈ Ω is available, then P~ (z, y) 

may be calculated from P~ Ω(Θ) and z(y, Θ)). As the output 

depends on the action and on the state of nature, then one 
have to obtain the fuzzy preference ordering (FPO) µR

A~
on 

the set of agent's actions. This FPO is induced by agent's 
goal function (1) and fuzzy information function P~ (z, y). 

To solve this problem, the general approach, introduced in 
[10], may be applied. Finally, the FPO µR

A~
 is defined in 

(Novikov, 1997b; Novikov, 1997c): 
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The fuzzy set of undominated actions has the following 
membership function (Orlovsky, 1981): 
 

( ) ( ) ( )µ µ µ
R

A
R

A
R

A

ND

y A
x y x x y

~
sup

~
,

~
, .= − −













∈

1  

 

( )
( ) ( )

( ) ( )µ
R

A

ND

y A z t A
f z f t

x P z y P t x
~

sup sup min , , , .
, ~ ~

= − 







−



















∈ ∈
≥

1
0

 

( ) ( )

( ) ( )− 

























∈
≥

sup min , , , .
, ~ ~z t A

f t f z

P t x P z y
0

              (3) 

 
Rational behaviour of the agent implies the choice of the 
actions, which maximise (3), i.e. maximally undominated 
actions (MUA). 
 
If preferences of the agent on the set of feasible outcomes 
depend on the penalty function, then the choice of the agent, 
generally, depends on this function too. Denote the unfuzzy 
set of MUA (it corresponds to the term "the set of 
implementable actions" in the theory of contracts) by P(χ): 
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The set of unfuzzy undominated actions 
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(Orlovsky, 1981). 
 

In the framework of the benevolence hypothesis (HB - the 
agent chooses from P(χ) the action, which is the most 
preferable from principal's point of view) the efficiency of 
management is defined as:  
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The guaranteed efficiency is defined as the guaranteed value 
of principal's goal function over the set of MUA: 
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The fuzzy set P~ (z, y) is normal iff: 
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The fuzzy set P~ (z, y) is α-normal iff: 
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A.4. P~ (z, y) is α-normal. 

 
Consider the following unfuzzy mathematical programming 
problem: 
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Lemma 1. Assume A.4 and FPO µR

A~
(x) is induced by 

agent's goal function (1) and fuzzy information function 
P~ (z, y). If (z0, y0) is a solution of (10), then 
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Let (z0, y0) be a solution of (10). It is sufficient to show that 
the following inequality takes place:  
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To the contrary, let there exist ~y ∈ A and ε > 0, such that 
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Choose ~z ∈ A such that P
~

( z
~

, y
~

) ≥ α - ε. As (z0,y0) is a 

solution of (10), then f(z0) ≥ f( ~z ) and ( )P z y~ ,0 0  ≥ α. Thus  
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which contradicts to (12). Q.E.D. 

 
Thus, the problem of the analysis of α-undominated actions 
set is reduced to the exploration of standard unfuzzy 
mathematical programming problem (10). The following 
obvious lemma gives the set of sufficient conditions for the 
existence of the solution in a wide class of models. 

 
Lemma 2. Assume that one of the following requirements 
are satisfied: 
- A.4, A and A0 are finite sets; 
- A.4, A and A0 are compact sets, f and P~  are upper-

semicontinous functions; 
- A.4, A and A0 are compact sets, f is upper-semicontinous 
function and P~  is α-normal; 

then the problem (10) has at least one solution. 
 
The list of sufficient conditions, given by lemma 2, is far 
from being complete, but they correspond to most of the 
commonly used assumption and embrace many real 
incentive problems. 

 
Corollary 3. 
a) Under the conditions of lemma 1 and lemma 2 the set of 
α-undominated actions is not empty;  
b)  If A.4 is valid, α = 1, A and A0 are compact sets and f 
and P~  are upper-semicontinous functions, then the 

Orlovsky set is not empty and any solution of (10) belongs 
to this set. 
 
The result of lemma 1 states that solutions of (10) are α-
undominated actions of the agent. But, generally, some α-
undominated action may not satisfy (10). The following 
trivial lemma defines the class of models, where such an 
opportunity is excluded. 

 
Lemma 4. Assume A.4. Under the conditions of lemma 2 
any α-undominated action belongs to the set of the 
corresponding unfuzzy mathematical programming problem 
solutions.  



 

3. OPTIMAL INCENTIVE SCHEME  
 
Lemma 5. Assume A.1 - A.3. Then the set of the agent's 
goal function maximums coincides with the closed interval 
P = [z -, z+] ⊆ A0, where z - = min {z ∈ A0 | h(z) ≥ h(r) - C }, 
 

z+ = max {z ∈ A0 | h(z) ≥ h(r) - C }, 
 

r ∈ [r -, r+] = Arg max
y A∈

h(y). (13)   

 
Moreover, obviously, the set P is the set of implementable 
actions, while guaranteed implementation is valid for the 
following interval  

 
Pδ = [z - + δ,  z+ - δ],  δ  >0.                  (14) 

 
Denote y1 = arg max

y A∈
H(y) and suppose that y1 > r 

(the inversed inequality is analysed similarly). Consider the 
C-type incentive scheme (penalty function): 
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The action x* ∈ P gives maximal value to the 

agent's goal function. Fix some x* ∈ P and denote 
 

Q(x*, α) = {y ∈ A | P~ (x*, y) ≥ α}.            (16) 

 
Lemma 6. Assume A.1-A.4. Then ∀ x ∈ P and ∀ y ∈ Q(x, 
α) there exists the penalty function - χc(x*, z), such that the 
action y is α-undominated. 
 
If the principal announces that he will use the C-type 
incentive χc(x*, z),  x* ∈ [z -, z+] then ( )x Arg f z

z A

∗

∈
∈ max

0

. 

 
The conditions of the lemma imply that the corresponding 
set (16) is not empty. Thus (x *, y ∈ Q(x *, α)) is a solution 
of (10). Therefore, by lemma 1, y∈Q(x*,α) is an α-
undominated action. Q.E.D. 

 
If the rational behaviour of the agent is the choice of α-
undominated actions, then the maximal set of 
implementable actions is given by the following condition: 
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This set may be achieved by C-type penalty functions. 
Summarising this statement and results of the lemmas, the 
following theorem is valid. 

 
Theorem 7. Assume A.1-A.4 and HB. Then: 
a)  for any feasible incentive scheme there exists the C-type 

penalty function, which has at least the same efficiency; 
b)  incentive problem's solution (the "jump" point x) 

coincides with a solution of the following problem: 
Ф(x)

( )
→

∈
max

x S α
, where the optimal value of x equals 

x*∈P and S(α) is given by (16) - (17). 
If the hypotheses of benevolence is not valid, then the 
efficiency of the C-type incentive scheme χc(x, ⋅) is given 
by: K(x) = K(χc(x, ⋅)) = 

( )
min

,y Q x∈ α
H(y). The optimal solution 

may be obtained from the coordinated (incentive 
compatible) planning problem: K(x) → max

x P∈
. 

 
 

4. UNCERTAINTY AND THE EFFICIENCY 
OF MANAGEMENT 

 
Let us analyse the influence of uncertainty on the efficiency 
of management. Consider two fuzzy models, which differ 
only in information: P~ 1 (z, y) - in the first one and P~ 2 (z, y) 

- in the second. 
In the first model the players posses more information than 
in the second model iff: 

 
∀ y ∈ A,  z ∈ A0, P~ 1 (z, y) ≤ P~ 2 (z, y).            (18) 

 
Denote K1 and K2 - the appropriate efficiencies of 
management. 

 
Theorem 8. Assume A.1-A.4. Then K K K Kg g

1 2 1 2≥ ≤, . 
 

This result follows from the obvious conclusion: ∀ y ∈ A 
any fixed level sets of fuzzy information function P~ 1(z, y) 

include corresponding sets of fuzzy information function 
P~ 2(z, y) (see (16)). 

 
The result of theorem 8 looks like not a trivial one. Under 
the hypotheses of benevolence the efficiency of 
management increases with the increase of uncertainty. For 
example, some unfuzzy undominated solution of fuzzy 
incentive problem may be more efficient, then the solution 
of the corresponding deterministic problem. The similar 
effects appear in the models under interval uncertainty 
(Novikov, 1997a). 
 
This effect may be qualitatively explained in the following 
manner. The definition of agent's rational behaviour (the set 



 

of implementable actions) implies under the HB that he is 
indifferent between all the MUA. Thus, if there are several 
elements of this set, then the set of implementable actions 
includes corresponding deterministic one (both the principal 
and the agent adopt the widely used principle: "the less you 
know, the better you sleep"). If the HB is not valid, then the 
guaranteed efficiency of management satisfies the common 
sense - it decreases with the increase of uncertainty. 

 
Consider the following example, which illustrates 
theoretical results. 

 

Example. Let A = A0 = ℜ1; h(z) = z - 
2

20
z ; H(y) = y; 

P~ (z, y) = ( )e z y− −γ 2
, where γ  > 0,  C =1,8. Then P = [4; 

16], S(1) = P. 
 

Fix some α ∈ (0; 1]. The α-level sets of the fuzzy function 

P~ (z, y) are: [ y - ( )1 1
γ αln ; y + ( )1 1

γ αln ]. 

 

Thus: S(a) = [ 4 - ( )1 1
γ αln ; 16 + ( )1 1

γ αln ]. 

 
With the decrease of a the set of implementable actions 
expands. With the increase of information (when γ 
increases) narrows. 

 
If the fuzzy information is given by 

 

P~ (z, y) =
[ ]
[ ]

1 1 1

0 1 1

, ,

, ,
,

z y y

z y y

∈ − +

∉ − +






 y ∈ A, 

 
then the C-type incentive scheme x* = z+ = 16 under the HB 
induces the agent to choose the action y1

∗ =17. 
Consequently, the efficiency of management equals: 
K1=H( y1

∗ )=17. The efficiency of management in the 
corresponding deterministic model is K0 = H(x*)=16. If the 
HB is not valid, then the choice of the agent is - y2

∗ =15, 
which leads to the decrease of the guaranteed efficiency of 

management: K2  = H( y2
∗ ) = 15. Thus K2 < K0 < K1. 

 
 

5. CONCLUSION  
 

The C-type incentive scheme is optimal in the fuzzy 
incentive problem under external uncertainty. The 
guaranteed efficiency of the fuzzy model management is 

less then the deterministic one and decreases with the 
increase of uncertainty. 

 
The results of deterministic and stochastic models analysis 
may be efficiently applied (with slight modification) for 
fuzzy models. But in spite of the similarity with stochastic 
models, they differ essentially in the definitions of rational 
behaviour and optimal solutions. The class of fuzzy 
incentive problems seems to be rich enough both from 
theoretical and practical points of view, and requires the 
further exploration.  
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