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Abstract 

 
Game-theoretical model of the agents’ coalitional in-

teractions is proposed. General management problem is 
formulated. The incentive problems in radial and common-
agency organization structures with coalitional interactions 
are solved. The processes of system structure changes 
because of coalitional interactions are analysed. The 
resource allocation problem in the system with coalitional 
interactions of agents is solved. 

 
 

1   Introduction 
 

There are two main motives that influence the eco-
nomical behaviour of the individuals – the tendency to get 
the maximum of private benefit and unavoidable aspiration 
to cooperate with other people. The contradiction between 
these motives brings forth a conflict. 

The mathematical basis of contemporary organiza-
tional management science is the game theory, which 
studies general models of conflict. Non-cooperative game 
theory concepts (e.g. Nash or Bayesian-Nash equilibrium) 
have long been used by the organizational management 
theory to formulate the models of agents’ behaviour, thus 
leading to underestimation of agents’ coalitional interac-
tions in the management process. 

A few publications have recently appeared [1, 2] that 
concentrate on coalitional interactions in an organization. 
Practically all of them are based on the model that permits 
asymmetric information and follow the Nash program [3] 
implying an explicit definition of a communication process 
between agents. The necessity to take into account com-
plex communications occurring in real-life organizations 
makes the model of coalitional interactions so cumber-
some that results can be achieved only in some particular 
cases. 

At the same time, the classical cooperative game the-
ory [4] could not propose a universally recognized game-
solution concept, like Nash equilibrium. One more disad-
vantage of the cooperative game theory (CGT) is lack of 
ways available to describe incomplete (or asymmetric) 
information. That is why a CGT game model has been 
considered to be inconvenient for organizational manage-
ment theory. 

Although asymmetric information case is very impor-
tant, there, nevertheless, exist a number of complete- and 
symmetric-information management problems that can be 
naturally and relatively simply described in terms of CGT.  

We suggest a means to avoid the imperfections of CGT 
and use the concept of the game core to formulate a model 
of agents’ coalitional interactions. This approach enables 
the principal to implement efficient management mecha-
nisms that are valid under rather general assumptions of 
agents’ parameters. 

 
 

2   The model of coalitional interactions 
 
Consider the system consisting of the principal and n 

agents. The payoff function ),,...,,( 1 θni yyuf  of i-th 
agent depends on the control action Uu ∈  of the principal, 
the actions jj Ay ∈  of all agents nj ,...,1=  and the state 
of nature Ω∈θ . The payoff function of the principal is 

),,...,,( 1 θnyyuΦ . The agents share the same information 
about the state of nature; therefore, they may exactly know 
it or may know some probability distribution or a set of 
possible states. For the sake of simplicity, we will assume 
the agents exactly know the state of nature, whereas the 
principal knows only Ω . 

Denote ∏
=

=∈=
n

j
jn AAyyy

1
1 ),...,(: . 

The principal chooses a feasible control action Uu ∈ , 
and then the agents choose their actions given the control 
action of the principal. Then the principal learns the state 
of nature Ω∈θ  and all the agents and the principal get 
their payoffs. 

Note that a set of the principal’s control actions can be 
rather complex and may include “actions depending on 
agents’ actions”: )(yuu = , thus implementing 2Γ  meta-
game [5]. 

A management problem for the principal is to find a 
feasible control action ),,(minminmax

),(

* θ
θθ

yuArgu
uPyUu

Φ∈
∈Ω∈∈

. 

Here ),( θuP  is a set of possible agents’ game out-
comes, given the control action and the state of nature. 

Unlike “classical” approach, which assumes ),( θuP  to 
be a set of Nash equilibrium points, we suppose ),( θuP  to 
be a set of cooperative game outcomes. Thus, we need to 
choose one of CGT game solution concepts as the basis. 
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To set the cooperative game (with transferable payoffs) 
is to define a set of players },...,1{ nN =  and a characteris-

tic function 12: ℜ→Nv  that determines a payoff for 
every nonempty coalition NS ⊆ . Given the game in the 
normal form, one can calculate the value of a characteristic 
function for a coalition S as the value of two-person game 
with payoff functions ∑ ∈= Si SNSiS xxff ),((.) \ , 

∑ ∈= Si SNSiSN xxff ),((.) \\  (where SiiS xx ∈= )( , 

SNiiSN xx \\ )( ∈= ) or an equilibrium payoff of a coalition S 
in this game. 

A payoff allocation is any vector x = (x1, …, xn) where 
each component is interpreted as the utility payoff to 
player i. An allocation is feasible for coalition NS ⊆  iff 

)(SvxiSi ≤∑ ∈ . A coalition can improve on an allocation 
x iff )(SvxiSi <∑ ∈ . An allocation x belongs to the core 
of game (N, v) iff it is feasible for the grand coalition N 
and no coalition can improve on x. Thus, the core is a set 
of allocations that meet the following condition 

)(NvxiNi =∑ ∈ , )(SvxiSi ≥∑ ∈  for all NS ⊆ . 

The mapping ]1,0[}{\2: →NNδ is a balanced cover 
iff 1)(: =∑ ∈ SSiS δ  for any player Ni ∈ . 

The core is nonempty iff for any balanced cover δ  
)()()( NvSvSNS ≤∑ ⊂ δ  [6]. 

A game with non-empty core is called balanced. 
A cooperative game is inessential iff 

∑ ∈= Si ivSv })({)(  for all NS ⊆ . The core of an inessen-
tial game includes only one payoff allocation })({ivxi = , 

Ni ∈ . 
If the only Nash equilibrium of agents’ game is a 

strong Nash equilibrium [3] and we use an equilibrium 
payoff to calculate a characteristic function, then the 
cooperative game will be inessential. 

Nonempty core ensures the stability of the grand coali-
tion because no other coalition can guarantee better pay-
offs to its participants. Some other solution concepts (e.g. 
NM-solutions [4]) assume that the grand coalition will 
surely take place even in some unbalanced games, but we 
consider this assumption too optimistic. 

The grand coalition of agents chooses the actions vec-
tor Niiyy ∈= )(  to maximize its payoff function 

),,( θyuf N  given the control action u and the state of 
nature θ, so the solution ),,(max),( θθ yufArguP N

y
= . 

If the game has an empty core, the analysis of coali-
tional interactions becomes much more complex, as 
different coalition structures of agents are possible. There-
fore, a conservative principal must choose her actions 
leading to a balanced game and guaranteeing predictability 
of agents’ behaviour. 

 
 

3   Incentive mechanisms in radial 
structure under complete information 

 
Consider the basic system discussed above. The princi-

pal’s payoff function ∑ ∈−=Φ Ni i yyHy )()()( σ  is the 

difference of non-negative income H(y) and the total 
incentives that the principal pays to the agents. The payoff 
function of i-th agent )()()( ycyyf iii −= σ  is the differ-
ence of non-negative incentives received from the princi-
pal and non-negative cost function )(yci  depending on 
the action ),0[ +∞=∈ jj Ay  of each agent. The incentive 
problem for the principal is to choose incentive scheme 
(i.e. the vector Nii y ∈))((σ  of incentives functions) maxi-
mizing her payoff whereas agents maximize their payoffs 
given the incentive scheme. In [7] is shown that if the 
agents act non-cooperatively, under natural assumptions 
the optimal incentives schemes can be written as follows: 
1. When the incentives of each agent may depend upon the 
actions of all the agents (i.e. )(yii σσ = ), the incentive 
scheme 
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implements the actions’ vector y* as the only dominant 
strategies equilibrium and is ε-optimal for the principal. 
2. When the incentives of every agent may depend only 
upon her action (i.e. )( iii yσσ = ), the incentive scheme 
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where ])()([maxArg* ∑ ∈∈
−∈ Ni i

Ay
ycyHy , implements the 

actions’ vector y* as the only Nash equilibrium and is ε-
optimal for the principal. 
3. If the principal observes some aggregated output 

)( ygz =  and her income depends only upon z, then the 
scheme 
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implements the actions’ vector y* as the only Nash equilib-
rium and is ε-optimal for the principal. 

In the model under consideration any coalitional inter-
action is undesirable for the principal so she must ensure 
the result of non-cooperative game coincides with one of 
cooperative, i.e. the game is inessential. 

In [8] is proven that the game is inessential (it has the 
only Nash equilibrium that is also strong one) for incentive 
schemes (1) and (3). For the incentive scheme (2) where 
the incentives of every agent can depend only upon her 
action, coalitional interactions can lead the agents to 
choose some vector of actions other than y*, so additional 
payments from the principal are required and the effi-
ciency of mechanism decreases. 

 
 



 

4   Incentive mechanisms in common 
agency problem (complete information) 

 
Common-agency systems, where several principals 

control the only agent, often arise in project-oriented and 
matrix organizational structures. One of the problems of 
such structures is the conflict of the project managers 
sharing the agent’s manpower. Thus, it is of interest to 
obtain the conditions when this conflict does not take 
place. Consider the following incentive problem (Fig. 1). 

 

Principal 1

Agent

...... Principal i Principal n

σ
1 (y) σ i(y

)y* y* y*
σ n

(y)
Top Management

 
Figure 1. The model of common agency inventive problem 

 
The principals have payoff functions 

)()()( yyHyФ iii σ−= , },...,1{: nNi =∈ ,  
Here Hi(y) is the i-th principal’s income function and σi(y) 
is non-negative incentives function from the i-th principal 
to the agent that depend on the agent’s action mAy +ℜ=∈ : . 

The payoff function of the agent is 
)()()( ycyyf Ni i −= ∑ ∈ σ . Here c(y) is non-negative cost 

function that increases on every component of the action 
vector.  

To build a characteristic function of this game we 
should analyse the non-cooperative game of the principals’ 
coalitions whose strategies are the incentives functions 
σi(y). We will build a characteristic function using Nash 
equilibrium payoff of the principals’ coalitions. 

As shown in [9] the set of Nash equilibriums for the 
game of the principals’ coalitions is rather vast. It includes 
both Pareto-optimal and non-Pareto-optimal outcomes. 

We can make different assumptions about expected 
negotiation result for the game of coalitions: 
1. If we suppose that every coalition S relies on guaran-
teed payoff among all the equilibriums then its characteris-
tic function will be  

]0);(minmax[:)( yHSv SAyG
∈

= , NS ⊂ , 

where ∑ ∈= Si iS yHyH )(:)( ; 
)]()([max)( ycyHNv N

Ay
G −=

∈
. 

2. If the coalition S relies on guaranteed payoff among the 
Pareto-optimal equilibriums then its characteristic func-
tion is  

)]()([max:)( ycyHGSv S
Ay

SGP −==
∈

. 

3. If coalition S relies on mean payoff among the Pareto-
optimal equilibriums then its characteristic function is 

)(5,0:)( \SNSNMP GGGSv −+= . 
If appropriate cooperative game is balanced, we con-

clude that the principals can effectively resolve their 

conflict. 
Theorem 1 [9]. If there exists some agent’s action y, 

such that for all the principals Ni ∈  their incomes )(yH i  
are minimal, then the game )(SvG  is balanced. 

Theorem 2 [9]. The game )(SvGP  is balanced for 

every separable agent’s cost function ∑
=

=
m

j
jj ycyc

1
)()(  

(where cj(.) – convex increasing functions and 
),...,(: 1 myyy = ) and smooth concave increasing income 

functions Hi(y). 
)(SvMP  is a constant-sum cooperative game so it is 

balanced only when the game of principals is inessential. 
 
 

5   Coalitional interactions and sys-
tem’s structure changes 

 
Consider the simple complete information incentives 

problem in the radial structure (see paragraph 3) with 
separable agents’ cost functions. We assume that the 
principal’s income function depends only on total output 

∑ ∈= Ni iyY : . 
Given the set of the agents, the optimal inventive 

scheme for the principal is 
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Depending on the transitory factors, (e.g. demand 
variations) the principal’s income function will vary from 
period to period, and for the constant set of agents the set 
of agents will be redundant in some periods and it will be 
deficient in other periods. Thus, the principal must vary 
the set of agents in the system appropriately to achieve the 
best outcome. 

If the principal for some reasons does not vary the set 
of the agents, the agents themselves can in an underhand 
way exclude redundant agent from the system. In this case 
all the agents gain, even excluded one, as he gets some 
discharge bonus.  

To keep confidentiality the agents must reallocate the 
plan (and the wage) of the excluded agent among the 
remaining agents, thus such a structure change requires 
their coalitional interaction. 

For an arbitrary coalition S of the agents, denote 
∑
∈=∑

=
∈

Si
iiYzS zcYC

Si
i

)(min:)(   

– the least costs for the coalition to implement some total 
output Y, ∑ ∈= Si iS yY * , ∑ ∈= Si iS σσ  – the total plan and 
remuneration for the coalition S respectively. 

An action of the coalition S is to choose its subset to 
implement the plan YS with minimal costs. Therefore, the 
characteristic function of the game considered is 

)(min)( SKSKS YCSv
⊆

−= σ . 

Theorem 3 [8]. If it pays to exclude some agent from 
every coalition, where he participates, then this agent will 



 

be excluded from the system and the remaining agents will 
distribute her plan to minimize total cost )(}{\ NeN YC  of 

plan NY  implementation. 
This plans allocation is optimal for the principal if she 

prefers not to vary the set of the agents but is interested in 
costs minimization. Therefore, coalitional interaction of 
agents is advantageous for the principal in this model. 

Above coalitional interaction concerns the case of re-
dundant agent. One can also consider the case of deficient 
agents, where the agents can invite additional agents from 
outside of the system. 

Consider an additional agent with cost function 
)( aa yc . The principal does not know about her existence. 

The coalition S of agents can gain from giving this addi-
tional agent a part of their plan YS if 

[ ] )()()(min
0 SSaaaSSy

YCycyYC
a

≤+−
≥

 . 

However, this condition can also be met for the coalition 
N\S, so the conflict between these coalitions arises. The 
above investigation of the common agency problem shows 
that this conflict can result in overpayments to the addi-
tional agent and thus misallocation of system resources to 
outside. 

However, such overpayments do not arise if additional 
agent joins the grand coalition N. Therefore, it is interest-
ing to obtain some conditions for the grand coalition 
stability. These conditions are the conditions of non-empty 
core existence for this game. 

Theorem 4 [8]. The cooperative game of the agents 
with concave cost functions is balanced, if the coalitions 
rely on the guaranteed Nash-equilibrium payoff when 
estimating their characteristic function (see )(SvG  game 
in paragraph 4). 

At that, the agents distribute their plans to minimize 
total costs of the principal’s plan YN implementation. 

 
 

6   Resource allocation 
 
Consider the following resource allocation problem. 

The principal allocates some fixed amount R of resources 
among n agents. Concave utility functions )( ii xf  of the 
agents },...,1{ nNi =∈  depend upon the amount 0≥ix  of 
resource received. 

The principal does not know exactly the agents’ utility 
functions (he knows only that they are concave) but wants 
to allocate the resource to maximize the sum 

∑ ∈=Φ Ni iin xfxx )(),...,( 1  of agents’ utilities. 
To obtain the information about the agents’ utility 

functions the principal receives from them the messages 
si∈[0, R], i.e. the amounts of the resource the agent prefers 
to receive. Then the principal allocates the resource ac-
cording to the resource allocation mechanism 
xi = πi(s1, …, sn), Ni ∈ . 

We will analyse continuous direct-priority resource al-
location mechanisms (where the amount of resource, 
received by i-th agent, continuously increases as her 
message si increases given the messages of the other 
agents). 

First, consider non-cooperative resource allocation 

model without any coalitional interactions. In this case, the 
agents are supposed to choose their Nash-equilibrium 
messages. Under the natural assumption of resource 
deficit, the agents start manipulating their messages to 
receive more resource. 

The analysis of this non-cooperative game shows [10] 
that one can divide the agents in two groups: the dictators 
and the non-dictators. The dictators fulfil their resource 
needs (i.e. receive the amount of resource that maximizes 
their utility function). The non-dictators reveal maximal 
feasible messages to receive as more resource as they can 
while the dictators send only such messages, that allow 
them to obtain just as much resource as they need. 

An efficiency of the resource allocation mechanism is a 
ratio of actual principal’s payoff value ),...,( 1 nxxΦ  to its 
maximal value ∑ ∈=∑ ∈

Ni ii
Rx

xf
Ni i

)(max . 

A guaranteed efficiency K0 of an allocation mechanism 
is its efficiency for the worst possible agents’ payoff 
functions profile.  

Denote )(maxarg:
0

ii
x

i xfr
i ≥

=  – the optimal amount of 

resource for the i-th agent. 
Theorem 5 [8]. Consider an arbitrary direct priority 

continuous resource allocation mechanism. If the principal 
knows that ii rr ≤ , Ni ∈  then RrrxK niNi

/)},...,({min 10 ∈
= . 

Another information (like ii rr ≤ , Ni ∈ ) does not change 
the guaranteed efficiency RRRxK iNi

/)},...,({min0 ∈
= . 

The necessary condition of the informational coalitions 
formation (the weakest type of coalitional interaction) is 
the possibility for the agents to choose their messages 
cooperatively. The other coalitional interactions can be 
divided in two types: 
1. The resource reallocation among the agents; 
2. The payoff transfers among the agents. 

Consecutively allowing these types of the coalitional 
interactions, we obtain the following models: 
1. No resource reallocation, no payoff transfers (only 

cooperative decision-making is permitted); 
2. The resource reallocation is permitted, but not the 

payoff transfers; 
3. Both the resource reallocation and the payoff transfers 

are permitted; 

 
Figure 2. The dependence of the resource volume 

xT received by the coalition NT ⊆ in the Nash equilibrium 
upon its resource requirements rT (here Nr=:ρ ) 

 
Theorem 6. For the models 1 and 2 the coalitional in-



 

teraction can not change the non-cooperative outcome of 
the agents’ game. 

Thus, the only model where the real cooperation can 
arise is the third one as the abilities of the cooperation in 
this model are the highest ones. 

The characteristic function value for coalition T is de-
termined by the coalition Nash-equilibrium payoff in its 
game with the coalition N\T. 

As shown in [8] the characteristic function is 
 ∑

∈=∑
=

∈
Ti

ii
rxy

yfTv
TT

Ti
i

)(max)(
)(

,  

where ∑ ∈= Ti iT rr :  is the resource requirement of the 
coalition T and the dependence xT(rT) is shown on Fig. 2. 

If this game of the agents is balanced then the principal 
can be sure that rational agent will join the grand coalition. 
The payoff function of the grand coalition coincides in this 
game with the principal’s payoff function. Therefore, the 
grand coalition will redistribute the resource optimally 
among its participants and the efficiency of each resource 
allocation mechanism that leads to the balanced game is 
maximal.  

Theorem 7 [8]. If for every balanced cover Tδ  
RTrxNT TTT ≤∑ ⊂ ),(δ  then the game of the agents is 

balanced. 
The verification of this theorem conditions shows that 

for every direct-priority resource allocation mechanism 
there exists such agents’ utilities profile that the game is 
not balanced. Nevertheless, if the principal has additional 
information about agents’ resource requirements (e.g. the 
vector Niir ∈)(  of optimal resource allocations belongs to 

some set nL +ℜ⊆ ) sometimes she can be sure that the 
game is balanced. 

Corollary 1 [8]. If for every coalition T its resource 
requirements rT belong to the zone II (see Fig. 2) then the 
game is balanced. 

Corollary 2 [8]. If there exists an agent k such that for 
all coalitions, including this agent, their resource require-
ments belong to the zone III (se Fig. 2) and otherwise – to 
the zone I, then the game is balanced. 

In other words, the game is balanced if all the agents 
have relatively great requirements or there is the only 
agent, whose requirements are much greater than the 
requirements of the other agents. 

Note that the resource requirements in these conditions 
are bounded below. As theorem 5 shows, such restrictions 
do not change the guaranteed efficiency of resource 
allocation mechanism in non-cooperative model. Yet, this 
information proves to be extremely useful with coopera-
tive approach. 

Thus, one can see that the continuous direct-priority 
mechanism cannot ensure the game is balanced for all 
agents’ payoff function profiles. Therefore, to obtain the 
surely balanced game one has to consider other classes of 
resource allocation mechanisms. 

Corollary 3 [8]. The game of the agents is always bal-

anced for the constant-priority mechanism 
∑
∈

=

Nj
j

i
i A

RA
x , 

where every agent receives the constant volume of the 
resource irrespective of her resource request. 
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