TWO-LEVEL ACTIVE SYSTEMS.
111, EQUILIBRIA IN ABOVE-BOARD CONTROL LAWS
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This paper is concerned with functioning mechanisms of two-level active systems in which the
control laws rely on the principle of above-board control [1]. Several properties of the solu-
tions to a game of active elements [2] in active systems with such functioning mechanisms are
proved. As the solutions of a game of active elements we consider Nash equilibrium situations
[3] under the hypothesis of weak influence. |

1. Introduction

Of the present series of papers, [1] dealt with the description of a model of a two-level system and its
functioning mechanisms, and [2] posed the problems of analysis and design of functioning mechanisms with the
counterflow method of data formation. In the approach developed in [2] the analysis and design of functioning
mechanisms of active systems reduces to the investigation of a special class of games with nonconflicting in-
terests [4] of the center (C) and the active elements (AE). At present, there are still no regular methods de-
veloped for the solution of such problems. One projected way of solving the design problem consists of choog-
ing "good" (from economic, practical, and other considerations) functioning mechanisms and subsequently
verifying their properties. In this scheme the functioning mechanisms that realize in various forms the idea,
put forth by Soviet economists, of coordination of the interests of the system on the whole and of the elements
that compose it seem promising [5]. A version of realization for the idea of coordination of inferests in an
organizational system is application of control laws based on the principle of coordinated control, and, in parti-
cular, the principle of above-board control [1]. This paper deals with the equilibrium situation in functioning
mechanisms that use the laws of above-~board control. | o

2. Relevant Solutions of a Game of Active Elements

In our investigation of a game with C and AE, solutions of the game of the AE will be understood to be
Nash equilibrium situations [3] under the additional assumption that each AE does not take into account the in-
fluence of the estimate s; communicated by it to the control A(s) established by the center (the hypothesis of
weak influence as a hypothesis about the behavior of the elements, or, briefly, the WI hypothesisj}.

For the functioning of an active system (AS) it is possibletogive several variants such that the solutions
of the game of the active elements should be taken to be Nash equilibrium situations. In several AS models
with repeating periods of functioning the indicator behavior of the AE leads to such solutions of the game (Ex-
ample 4 in [2]). A number of collective principles of choice of rational strategies can also be reduced to a
Nash equilibrium situation (Example 3 in {2]). We can also mention the case when there exist "absolutely opti-
mal" strategies for the elements (Example 2 in {2]). The solutions of the game that are obtained for a choice
of "absolutely optimal" strategies by the elements satisfy the Nash equilibrium conditions.

The following circumstances form the basis for the assumption by the center of the hypothesis of weak
influence. For a quite large number of enterprises and in the absence of a monopolistic effect in the branch,
the facts of weak influence of a particular enterprise on the control parameters that are common for all the en-
terprises (prices, norms) and that are determined from an analysis of the state of all the enterprises of the
branch are well known in real organizational systems in economics. It is also possible to draw a certain analo-
gy with the condition of "perfect competition” in models of a decentralized economy {6} and others, which as-
sumes that the elements (producers and consumers) do not take into account the influence of the significance of
the characteristic realization on the price vector. Undoubtedly, the assumption of the WI hypothesis is justified
if in a certain sense there really is a weak influence of an estimate s; on the control A(s). We shall assume
that the WI hypothesis is plausible for a sufficiently large number of elements if the following condition of weak |
influence is satisfied (we assume that A(s) are continuously differentiable functions and vs€&, v :Aj(s) Z Ajmin
> 0):

Moscow, Translated from Avtomatika i Telemekhanika, No, 9, pp. 83-91, September, 1977. Original
article submitted May 6, 1976,

0005-.1179/77/3809~1339 307,50 ©1978 Plenum Publishing Corporation 1339



3y
Vs=Q, Vi, j, 1 lim M(s) == (), (1)

B b asii

Here n is the number of AE in the system. Sufficient conditions for the satisfaction of the condition of
weak influence (1) for resource allocation models were given in [7-9]. Further, we assume that the condition
of weak influence holds, and, consequently, it is possible o assume the WI hypothesis.

We write the conditions of Nash equilibrium for the n AE with the effectivity criteria (1) in {2].

The situation s* = {s{*}€Q is called a Nash equilibrium if

Vi:gi(A(s), z;(s"), r:) = max Epi(?v (s°(i)), z(s*(i)), re), | (2)

aieﬂf

where s*(i) = (s{™*, ...; 8% 1y S*j+ys -.-» Sn"). Under the assumption of the WI hypothesis the Nash equilibrium
situations s* are determined by the conditions

Vi (2, r) = max .00, 25 (D), r), - ®

5 l.F_ﬁ ;

where A*=A(s).

For the subsequent presentation we need the following lemma (the results of this and the following sec-
tion are given under the assumption that all the components of the realization vectors of the AE are planned;

a generalization to the case of functioning mechanisms with partial planning of realizations of elements is given
in the appendix).

Lemma 1.
VA= L, Vi max q;(A, 2, r) = max @A, 2y r) = max  fi (A Yo ¥ (4)
N
Vie L, Vi: Arg max @; (A, 7, 1) = Arg max ¢; (A, 2;, 1) = Arg max fi(A, Yi, Yi) (5)
x.=RYi & X (ry) y, Y, ()
L

Here p; is the dimension of the vector xj, R+pi is the positive orthant of pi-dimensioﬁal Euclidean space,
and the symbol "Arg max f(z)" denotes the set of all z* such that f(z*) = max {(z).

7 €7 7€ 7
A qualitative interpretation of this result is as follows. The maximum of the efficiency criterion of each
element with respect to the plan is attained on the set of realizable plans; moreover, because of the presence
in the goal functions of the elements of penalties for deviation of the realization from the plan, the optimal plan

for an element coincides with the realization ensuring a maximum for its goal function on the set of locally ad-
missible realizations for zero penalties. |

Corollary. For the functioning mechanism {1] £ =<W, B, 7> a sufficient condition for the existence of a

Nash equilibrium (3) under the hypothesis of weak influence is the following: Thereis a point s* at which the
control A* = A(s*) and the.plan x* = x(8*) satisfy the conditions .

Vitg (A z.',re)= max @Az, re). (6)
x; Exi{ri} ' '
Indeed, for any equilibrium situation s* we can write the following chain of conditions:

Viog (A%, 2%, r) = max @ (A*, » (s* (i), r;) £ max @ (A%, x, ) = max @ (A, z;, ;).

SIEQ’E ELERPi 'xIE?xi(ri)
4

Here we have written first on the left the equilibrium condition (3), the next inequality is obvious, and the f_'
next equality is satisfied in view of Lemma 1. From this it is clear that if (6) holds for s*€g, then s* is an .
equilibrium situation. '

3. Analysis and Design of Functioning Mechanisms in the Class G

We say that the functioning mechanism % =<W, B, > belongs to the class G! if, under the assumption of
the WI hypothesis, we have for it: |

a) there exists at least one situation s* of Nash equilibrium;
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b) any situation s* of Nash equilibrium satisfies (6).

Nash equilibrium situations under the WI hypothesis (6) (in the following we shall for brevity call them
simply equilibrium situations) were first introduced in {10]. In the same place it was conjectured that in the
class G! the functioning mechanisms 2 = <W, B, Tghe> that include the laws of above-board control guarantee
the reliability of the information communicated by the elements and are an optimal solution to the problem of
choosing a control law. A rigorous justification of this result was first carried out on examples of a series of
one-dimensional models of AS [7, 10], then on a multidimensional model of resource allocation {8, 9]; in this
paper it is carried out for the general model of an AS described in [1].

The following lemma proves that under the assumption of the WI hypothesis the functmmng mechanisms )
I = <W, B, Tahe> belong to the class G'.

Lemma 2. If in an AS with functioning mechanism Z = <W, B, 7ahc> the WI hypothesis holds, then
Z =<W, B, Tahe> €G.

The fact that an equilibrium situation s* = r exists in an AS with functioning mechanism I= <W, B, Tape>
is established by the next result.

Theorem 1. If in an AS with functioning mechanism T = <W, B, Tghe> the WI hypothesis holds, then the
situation s* = r is always an equilibrium in the sense of (6).

Corollary. If in an AS with functioning mechanism Z =<W, B, Tghec> the WI hypothesis holds and there
exists only one equilibrium situation s*(6), then it has the form s*=r. Correspondingly, in this case the de-
gree of distortion of information (13) in 2] is 6 = 0.

Remark 1. If in an AS with functioning mechanism Z = <W, B, Tape> the WI hypothesis holds, then for
each AE the equilibrium strategy s¥; = rj is "absolutely optimal," i€l (proof in the Appendix),

We denote by Gl (W, B) the set of all control laws 7' such that under the fixed system of stimulation (W, B)
any functioning mechanism I = <W, B, 7'> belongs to G!: T =<W, B, m>€G!. We consider the problem of choos= "
ing a control law [2] on the set G}{(W, B). Theorem 2 solves this problem in favor of the laws of above-board
control. The uniqueness of the equilibrium situation s* = r is an additional condztlon imposed here on E = <W,

B, Tape>.

Theorem 2. If the WI hypothesis holds in an AS with functioning mechanism Z* = <W, B, Tghe> and there
is a umque equilibrium situation s*=r, then

K= max Kuv sz - R .(?),, |
1eCGW,B) _ : | :

The results of Theorem 2 show that under its assumptions the above-board control laws are optimal in
the class GHW, B). The value of the goal function of the AS in the equilibrium situation s*= r for these control
laws is determined by the expression (A.11) (see the Appendix) and in the generai’ case is not equal to its maxi-
mal possible value ¥,(r) because of the conditions of coordination (see (11) in [2]). In this connection we can
try to change the system of stimulation (W, B) in such a way as to increase the value of the effectivity criterion
of the C or even to attain an absolutely optimal value of it [2], i.e., Kyx = 1.

The next theorem states a condition on the functioning mechanism Z = <W, B, Tgape> that is sufficient for
its absolute optimality. First, following [10, 11], we introduce the condition of e;:ucoordmatmn of the functmn-
ing mechanisms £ =<W, B, Tahc>. We consider ‘Ifrg = max’I'(A, X, s}, |

where ‘?“EL’ z=X(s) n ¥ abe ()= max ¥ (i, z,58), e e

where acsl, z=X(s), z;=Arg max @A, 2, 8), i1

These are the expressions for the optimal values of the goal function of an AS in the problems of rigid
centralization and coordinated planning, respectively. We define the coordination coefficient as

p(s)=Wrc (5)/Yanc(s). (8)

The functioning mechanism Z =<W, B, mahe >is said to be epicoordinated if for it the coordination coef-
ficient Vs€Q is p(s) = 1. Qualitatively, this condition means the "full coordination" of the goal of the whole AS
and the goals of the AE that make it up.
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Theorem 3. If in an AS with functioning mechanism ¥ =<W, B, Tahe> the epicoordination condition holds
and there exists a unique solution s = r of the game of the AE, then Kyx = 1.

Corollary. If the WI hypothesis and the condition of epicoordination hold in an AS with functioning mech-
anism 2* = <W, B, mghe>, and there exists a unique equilibrium situation s* = r, then Kyx= 1. Examples of
epicoordinated functioning mechanisms T = <W, B, Ta1,.> can be found in [11].

In Theorems 2 and 3 essential use is made of the uniqueness of the equilibrium situation. In this con-
nection, sufficient conditions for the existence of a unique equilibrium situation in an AS with functioning mech-

anism Z = <W, B, Tghe> are of great interest. The following theorem formulates such conditions in the form of
conditions on the preference functions of the AE.t

We say that the condition of equality of rights of the preference functions for the i-~th AE is satisfied if
VASL, Vst s2eQ, stsd: A, sf) DA, s°)=9, (9)

where A;(A, z.)=Arg m%:% @:(A, zi, 8;). In content this condition means that for any admissible distinct estimates
| &Sy

sil, siZEQ i» 8i' ®5 iz of the i~thAE thecorresponding sets of coordinated plans of the AE do not have intersec-

tions.

Theorem 4. If in an AS with functioning mechanism T=<W, B, Tahe> the WI hypothesis and the condition

of equality of rights of the preference functions for all the AE (i€1) hold, then s* = r is the unique equilibrium
situation. .

Corollary. If in an AS with functioning mechanism Z = <W, B, Tahe> the WI hypothesis holds and VA€ L,
Vsj€4;, the preference function of each AE has a unique maximum at the point x; = ®n;(*, sj), where Vsjii, Sj_z
€Q5, it =8 vy, sit) # »i(A, s;%), i€], then s* = r is the unique equilibrium situation. The validity of the as-
sertion follows from the fact that the conditions formulated are sufficient for the satisfaction of the conditions
of equality or rights of the preference functions of all the AE (9).

By this Corollary, the conditions of equality of rights of the preference functions of all the AE hold for the
resource allocation problem, the "Plan" problem, and the "Consumer—Producer™ problem [7-10].

Another sufficient condition for the existence of a unique equilibrium situation s* =r in an AS with func-
tioning mechanism £ = <W, B, Tape> is the introduction of penalties for distortion of information [1, 2]. In the
course of the following presentation we assume that the operator ¢ :{cr-l} of formation of the estimates 6 = {Bi}
where 6; = 0j(sj, y;), i€I [2], is such that Vi: 8; #s;, if s; #rj, i.e., if at the stage of data formation that AE
communicate unreliable information, then at the realization stage of the plan the C, in generating the estimates
g = {Ui(si, yi)}, can always determine this.

Theorem 5. If in an AS with functioning mechanism % = <W, B, Tahe> the WI hypothesis holds and penal-
ties for distortion of information are introduced in the goal functions of all the AE, then s*= r is the unique
equilibrium situation.

It is interesting to note that in the condition of Theorem 5 no mention is made of the "force" of the penal-
ties for distortion of information. It can be assumed that in practice the "effect of penalties" is always present
in an AS with functioning mechanism Z=<W, B, Tabe> in the form of a moral stimulus to communicate reliable
information s* = r, the other conditions being equal; by "equal conditions” we mean here the fact that in an AS
with functioning mechanism Z =<W, B, Tabhe> for which the WI hypothesis holds each AE receives, for fixed |
equilibrium strategies of the remaining players (s{*, ..., 8%;_i, s*iﬂ, ...y Sp%), one and the same payoif, equal to

max @.(A(s"), z;, r.), 1€I, in any equilibrium situation.

xiexi(ri}

APPENDIX
Proof of Lemma 1. We use the notation
Di(A, ri)= Arg max fi(A, ¥y, yo) = Yi(re). o - (A.1)
visY ¢(r{)

TThe approach to the proof of the theorem was formed in [12] in an investigation of the guaranteeing strategies
of the elements in an AS with functioning mechanism Z = <W, B, Tahe>. |
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Let xi' be some arbitrary plan ofthei-thAE and yi' any locally optimal realization of the i—thAE for the
control A and the plan x;'. Then |

FiQn 2 yi) = max fe(h 24, yo) = @i (h, 24/, 7i). - (A.2)
yie¥(ry) | | S
a) We prove that if x{ ¢ Di(A, ri)and V vk € Di(A, T3
i |
ji(;h yi'; yl") ::'fi(;\u xi!g y,;’) 2({}1‘(39, 3{: J"i:). (A.3)

Two cases are possible: yi' =x;' and y;' # x;'. Let yi' = x;'. Then (A.3) follows from the definition of
the set Dj(A, r;) (A.1). Let y;' #xi{'. We assume that (A.3) does not hold, i.e.,

fi(h ¥i%, yi°)= max f{(kiyiiy‘:)gﬁt(}” 'y yi) < Ji(h ¥i, yi0). (A'é)

neYqlr)

The second inequality in this chain holds by the property (1) in [1] of the goal function of an AE with penal-
- ties for deviation of the realization from the plan. It is clear that (A .4) is a contradiction, This proves (A.3) -
for the case yi' * x;'. |

b) We prove that if x;,'€D;(A, rj), then

E ]

yi'=z/. _ | | ' (A -5)
This follows from the next conditions: S -
o (=hed,x')= max fi(h,yi, 50, if yi'=z;",
ff (}q i, ¥4 ) { vieYi(r:)
<fi (}'1 yi’! yif)E max fi(A, Ui, yi)-.- it yi’#zi".
e Yilr

'- Thus, by (A.1), (A.3), and (A.5), we can write

{ ﬁqli(}“t -fift ?‘g), if | .xi;ED‘i{}“‘rri):ll

max fi (A, yi yi) . L |
U e zdir, M areDGury, T e (ALS)

yieYiiry)

where D;(A, r;) © Y;(r;) = X;(r;) € R _Pi. By the last condition, if xj'€¢Dj(A, ri), then

max fl (} y'lj y'l-)” max q;'.l. (!' xij ri)"""“ max q:; {i‘k; Z{, J‘“-,;)- {p;(h Il s 3‘1)
yisY{ryg) _ xieXiryg) o FE R o _ '

if x,"€D;(A, r;), then

max fi(A, ¥, y)= max ¢;(A, 2, r)= max ¢;(A, 24 r=)> i (A, zi', ri).
yEY (1) X xye RSP

The assertions (4.12) and {4.13) in (1] follow from this. The lemma is proved,
To prove Theorem 1 we need the following lemma.

Lemma 3. If in an AS with functioning mechanism Z €G! the WI hypothesis holds, then for each AE inany
equilibrium situation s* the realization y;* coincides with the plan x;(s*):

yr=zi(s*), iel. (A7)

Proof. For functioning mechanisms in G! any equilibrium situation s* satisfies (6). Considering the con-
ditions (4) and (5) given in the formulation of Lemma 1, we immediately get a proof of Lemma 3.

Proof of Theorem 1. We write the conditions for perfect coordination (A.6) in [1] for the law of above--
board control (abce) wheﬂ the estimates s*=r are communicated by the elements:

Viigi(h(s"), 2:(s"), re) = max @i(h(s), z4,7e). - (A.8)
ey xee2 Xglry)
By (A.8), the equilibrium conditions (6) hold in the situation s*=r. The theorem is proved.
Proof of Remark 1 to Theorem 1. It must be shown that the following condition holds:
VseQ, Vit @i (A(s (D)), ze(s1()), i) = max @: (A (s), i (s}, 14). (A.9)

S{Eﬂi
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Here si(i) = {Syy +++»8j_1s Lis Sj+1» -+-» Sp). We write the conditions for perfect coordination (A.6) in {1] for
the law of abe and for the estimates s'(i) of the AE

Vi @i (A(GsT (), 2 (2 (0)), r) = max @i (A(s(i)), s, 7:) = maxq; (A (s), z:(s), r1).
nieE Xplrs) FRE-RvP
The second equality from the left are written in view of the Corollaryto Lemma 1. With this, (A.9) is
proved,

Proof of Lemma 2. Under the conditions formulated in the lemma, the existence of an equilibrium situa-
tion s* = r satisfying the conditions (6) follows from Theorem 2. It remains to prove that for any situation s~
of equilibrium (3) the conditions (6) hold.

Weconsiderany Vi€Lf the equilibrium strategy of the i~-th AE is s{* = r;, then, by the conditions for per-
fect coordination for the abc law (A.6) in [1], the condition (6) holds for the i~th AL,

Let s{** r; Two cases are possible: a) (6) holds; k) (6) does not hold. We prove by contradiction that
under the conditions formulated in the lemma the case b cannot hold. Indeed, suppose that (6) does not hold,
and, consequently, xi(s*)f D;(A*, r{}. We consider the following situation: s (i) = (8%, .., 8™, Ty 8™ {41y oo
Sy ). We prove that

gilh, 2i(sH(1)), ry > @A, xilst), 1), (A.10)
where A* = A(s*). From this it follows that s* is not an equilibrium situation, consequently, the case b cannot
hold. For the proof of (A.10) we write the following chain of conditions:

P+ (?'.1 2y (31 (3} ,}1 ?"{} = 1aX @4 (‘}.,*? Ii, T() = i (}"1 e 2 (ds.}! ri)‘

IiEXf{ri}

The first equality in this chain holds by the definition of the conditions of periect coordination (A.6) in{1],
and the next strict inequality holds by Lemma 1, if we assume that xi(s*)Q’Di(h , T1). The lemma is proved.

Proof of Theorem 2. We use the notation 7.(%, z, r)=Arg max [} =z, y) for the set of locally optimal

yieBy{xnri)

~ plans of the i~-th AE for a given-plan x; and control 2;

T(}.,mr):HTf(?.,x;,ri}; D(,A.,r'j:HDi(h.ri); X':(S)=X(3)n(HAi(J\f13i))

iaf iel fext

is the set of coordinated plans HA,Z(;,,, s;), of the AE that satisfy the restrictions X(s) of the AS. We consider

the guaranteed value of the goal function of the AS on the set of locally optimal realizations of the AE for a

choice of estimates s = {si}: T(A(s), X(s), *) = min P\(s), x(s), V).
¥ET(X(8),x(s).7)

In an AS with functioning mechanism Z*=<W, B, Tghe> in the equilibrium situation s* = r the value of
¥(A(s), x(s), r) will be

W(A(s*), z(s"), r)= max Wiz 1) = max min @A, z,¥)=
| A€ L, xe .‘ll:c(r) léL, xEX‘:{r}; y=T(h,x,T) ' '
= max min O, 2z, p)= max ® (A, v, ¥).
(e, xeX(r) y=x ML, ye Y{r)D(2,7)

In this notation the following conditions are used. We remark that the guaranteed value ¥ (X (s), x(s), r)
of the goal function of the AS on the set of locally optimal realizations of the AE in the situation s = r is equal
to the value of ¥ (A(s), x(s), r) at the optimal plan of the problem of coordinated planning (A.4)-(A.6) in [1] for
s = r. This allows us to write the first inequality from the left. The second equality in this chain follows from
the definition of the function ¥(A(s), x(s), r). In writing the third equality we use the fact that, by Lemma 2,
Z¥=<W, B, Tape>€ G! and, consequently, by Lemma 3, in an equilibrium situation the set of locally optimal
realizations of each AE has the form T;{(A, x;, rj) = x;(s), i€I. The fourth equality is based on Lemma 1.

We now consider any control law m(s)€GY{(W, B). Let s~ be the equilibrium situation (6) for this control
law. In the equilibrium situation sg™ the following conditions must hold:

Ax*=3(s5") EL, (A.12)
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Zi(sz°) == i, s ie] . _' o (A.].S)
yfn* €= Di (;‘-* }'I-), 55[? . o | . (A.lé)

yn'=Y(r). | (A 15)

The conditions (A.12) and (A.15) are obvious, and the conditions (A.13) and (A.14) were proved in Lemmas
1 and 3. Considering (A.13), the value of the goal function of the AS in the equilibrium situation s is equal to
P %, yr*, yr*), where Ar* and yr* satisfy the conditions (A.12), (A.14), and (A.15). Consequently, an upper
estimate of the value of the goal function of the AS in the equilibrium situation sp* will be

max Oy, = max O (As®, ¥a*, Ua')
AsL, y=Y¥(r)i\b{i,r) ‘el p ey ()b (A" 1)
and it coincides with the value of the goal function of the AS in the equilibrium situation s*=r forZ = <W, B,
Tabe” (A.11). Thus, V T,EGi(W, B) the value of the goal function in the equilibrium situation s,* does not exceed
the value of the goal function of the AS in the equilibrium situation s* = r for above-board control laws. From
this we get the analogous assertion with respect to the effectivity criterion of the C With this the theorem is

proved.

Proof of Theorem 3. Under the conditions of the theorem, for the value of the effectivity criterion of the
C (12) in [2] in an AS with functioning mechanism % = <W B, Tgpe> to be equal to the absolutely optimal value
Ks=1 it is necessary and sufficient that in the solution s = r of the game the following condition holds ((11 in{2]):
V(A (S), x(8), 1) = ¥m(r). This holds, by the following chain of equalities:

W (A (;), z (;), ry= max ¥(A,z, 1) = max VYA o ry== max Wk, z,ry=W,{(n,.

MEL, xE}Et{r} ' Ael, aeX%r), y=x Al x5 X{(r), y=x

The first equality defines the value of the function ‘I’(?x(g}, x(s), r) in the gituation s = r in an AS with func-
tioning mechanism Z = <W, B, Tahe> (see (A.11)), the second equality can be written by virtue of the corollary
to Lemma 3, and the third can be written by the epicoordination of the functioning mechanism Z = <W, B, Tahe>.
This proves the theorem. | -

Proof of Theorem 4. Suppose that the ceﬁditmns of the theorem are satisfied in the AS. Then, by Theo-
rem 1, the situation s* = r is an equilibrium in the sense of (6). We assume that in the AS there also exists
another equilibrium situation s* (6) such that s*#r. In an AS with fimctmmng mesﬁ&mgm Z=<W, B, Tahe> in
the equilibrium situation s* the equilibrium conditions (6} must actually hold, or, in other notation, Xi(s)
€A;(A(s™), ry), i€, as well as the conditions of perfeﬁi ﬁf}t}?dlﬁaiwﬁ {A.6) in [1I]: X;{s*€A;(A(s*), 81%), i€l. From -
this it follows that in the equilibrium situation s* the following conditions must hold: X; (8¥) €A;(A(s™), 1;)

N Aj(A(s*), 81*), i€l. Since, by assumption, s* #r, it follows that di, : sli* T and for iy we can write x;j (s%)
EAl A(s*), ri, 1B Ali(l(s*}) slj‘) =¢. By the same token, there does not exists an equilibrium situation s’z‘ (6)
suc:h that g* - r. The theorem is proved.

Proof of Theorem 5. Suppose that the conditions of the theorem are satisfied in the AS. Then, by Theo-
rem 1 and the properties of the goal functions of the AE with penalties for distortion of information (16) and (18)
in [2], the situation s*=r is an equilibrium in the sense of (6). We assume that in the AS there also exists
another equilibrium situation s* (6) such that s*#r. Then di,: 811 #rj,. We use the notation s**=(s*, ...,
s*ij_1» Tiys S*ij+1,...,5n*). We consider the effectivity criterion that takes into account the rule of chome of a
realization of the AE with number i, in an AS with penalties for distortion of information (17) in [2]. We have

the following chain of conditions:

d
fPiE) (M 2a, (8%°), Pagy Tag Ri (reg 1) ) = @i (A, 24, (8°°), 14)

==  max (Pi;(}"*: Tiy T4) 2 Qi (A7 x;t(s*), i) > (PEtd. (A, z:,(8%), 7oy Si0 i, 080, 8‘51#) ). {Aalg}

Iﬁaxﬁ{ rﬂ}

Here A *= A (s*}, 911 = 0”11(8;1 ) yzi*} . slf. In this chain the first equality for the situation s** holds by the
condition (18) in [2], the next equality holds by the conditions of perfect coordination in the situation s** (A.6)
in [1], the next inequality holds by Lemma 1, and the last strict inequality for the situation s* holds by the con-

dition (18) in [2]. Thus,

d
qugd (’1' T4, (3 }1 Fig Sii ' Zh(ﬁii'a eﬁ}) < @1, p (} % 3-7‘5;(3”)& Fig Tig xfx(rfia ?‘{i)),
which contradicts the fact that s* is an equilibrium situation. This contradiction proves the theorem,

Remark. As can be observed in the course of the corresponding proofs, the foregoing results can be car-
ried over also to the case of functioning mechanisms of an AS with partial planning of the realizations of the
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elements and the goal functions of the elements without penalties for deviation from the plan in a2 number of
components of the realization vectors of the elements. Here it is only necessary to consider that in those cases
when we are dealing with the coincidence (or disagreement) of the plan and the realization or with the analogous
conditions for the set of plans and realizations, it is necessary to have in mind the plans x; and the correspond-
ing planned components of the realizations y;p of the AE, i€I.

10,

11.

12.
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