CONTROL LAWS OF "SUPPLIER — CUSTOMER" SYSTEMS
A. Ashimov, V. N. Burkov, and N. Kulzhabaev UDC 62-50
The functioning is considered of simple models of "supplier— customer" systems in the process
of marketing produced products. A comparative analysis is made of the laws of rigid centrali-

zation and of open control [1]. Theorems are proven on optimality of shipping plans of produced
products inthe solution of the corresponding games.

1. System Description

We consider a "supplier— customer® system for the case of a one-product model. We use the notation
that bt is the quantity of prepared products put up for sale in the intervalt {t = 1, T, where T is the number of
planning intervals). We suppose that the superior planning organization has already solved the problem oflink-
ing customers and suppliers and, consequently, for the given supplier there is determined the customers and
the guantity of products @, to be shipped to customer p during the entire planning period T (g= 1, n, where n is
the guantity of customers). With this,

The supplier must concoct a graph of the shipments u = (up) = {upt} of prepared producticn on the basis of
demand from the customers, with account taken of their productive power. We assume here that each customer
0 communicates to the supplier an order in the form of an integral graph of shipments Qp = {th}, where G, de-
fines the quantity of produection to be shipped to customer ) during the first t intervals. The customer ecan also
communicate information on the "urgency" of orders, for example, in the form of coefficients of loss from un-
delivered products 8, = {Bpt} or of expenditures on storage of redundant products @p = {?pt}. Upon deviations

4
of the actual integral graph of shipments Vp={ V,,=Z u,,,} from Ry the customer suffers a loss (in the case of
i

Vot >Ryt these may be losses from the storage of redundant products, while when Vpt < Rpt these may be losses
due to shortages of raw material). We shall consider the simplest case of a piecewise-linear dependence of
loss onthe quantity of the deficit spt = Rpt— Vpt, namely,

L= aptAp:, if Aplé.(),
l]t_{ ﬁpiApl‘ if Apt>01

where a gt and fp¢ are loss coefficients.

" T
We accept the total logs L = ZZ Lyt as the criterion of effectiveness of functioning of the "supplier—

pa=1 teml

customer" system. We consider the following system of interaction between suppliers and customers. The
customer pays for products atthe price c¢ if shipment is performed during interval t. Of practical interest is
the case when the total orders from the customer in any interval t < T exceeds the quantity of products produced

" t
in this time, i.e., ZQ,(; Zb‘=B" In this case ¢, = ¢;= ...Z ¢T, i.e, the later the production of the shipment,
1

pemi

the higher the price. The price e¢T can be considered as the wholesale price of production, while the difference
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At = (¢4~ cT) determines the overcharge due to urgency. In his turn, the supplier is penalized for breakdown in
the schedule of production. Using a piecewise-linear form for the penalty function, we write the objective func-

tion of the supplier in the form n T
F= Z Z (erutpr=for),

=1 femi

foom {Tal(vol—op:). it Vo=@

1
Vor(@o—TVor), 1f V<@, (1)

where ypt and ¢t are penalty coefficients.

Remark 1. In (1) the wholesale price of the preduct et is independent of the time of shipment since it is
assumed that the additional profit from the overcharge due to urgency is entered into the government's budget.
Moreover, there have not been included the component objective functions of the enterprises which do not de-
pend on the chart of product shipments, and also, the time for the exchange of the documentation corresponding
to the lapse of time between production and delivery of products is not taken into account.

The objective function of the customer includes the fee on productions andthe losses upon deviation of the
actual graph from the desired one of the shipments:

T
Pﬂ’ Z‘ (c!up|+pot),
fami
o (Vo—Ry), if V=R, ‘ @
Por { ﬁﬂ (RIN_VM) [ if V'I<Rp|- i

Here we have not taken into account the expenditures of the customer on overhead costs on production
transport since it is assumed that they depend only weakly onthe dynamics of shipment.

Finally, we write the constraints determining the admissible shipment graph:
upf;o (P=1' n, fmaf - T)-

2 V,<B (tmi-T), 3

fo=0,m (p==i -?I). ) (4)

2, System Functionin_g_

We shall assume that the losses to the customer from undelivered products essentially exceed the expen~
ditures on storage of redundant products. Ignoring the latter, we write the customer's objective function (for
customer o) in the form

Py= Zr, {‘-'tuot+ Boi (Roi— Vo) 1 Rp~ Viit] }, _ 5

where 1[x] = 1 when Xx= 0 and 1[x] = 0 when x <0,

We assume that the supplier does not overship products above a specified quantity Qut, i.e., Vot = Qpy for

" T f .
all p and t. Furthermore, we can neglect the components Z Zcru,.scr ZQ,T of the supplier's objective

Pt tesl Pt

function as not depending on the delivery schedule of the produced products. Therefore, the supplier deter-
mines the plan for product shipment on the basis of the condition for minimization of penalties for breakdown
of supplies or on the basis of the equivalent condition for maximization of the quantity

n  Pei

Fe Z Z oV (6}

poml  tued

555



We now consider the functioning of the system. On the data-formation step, each customer communicates
to the supplier the integral graph of production demands Qpt (orders) and, if possible, an estimate of the loss
coefficient 8pt- We assume that penalty coefficient upt is equal (or directly proportional) to this estimate. On
the planning step the supplier determines the graph of product shipments V = (V). On this same step the prices
¢ = (c¢) are determined (or corrected). There are possible diverse procedures for the formation of shipment
plans and prices (diverse control laws). In this paper we investigate two control laws, i.e., the law of rigid cen-
tralization (RC) and the law of open control (QC}). In the RC law, the prices {Cf} are fixed (in particular, ct =cy,
that is, the wholesale price of the product), while the shipment plan is determined as the optimal solution of the
problem of maximization of {6) under conditions (3), (4), and

Vu=V, o (b=1-T, p=1=n, Va=0), {7
VosQu (t=1-T—1, p=1-r). (8)

We write the problem of (3), (4}, and (6)-(8) in another form by going to the variables uyy = Vpt— Vo te1-
T—i .
We denote S§,= 2 ne.  After uncomplicated tranaformations we obtain the maximization problem
Tomi
n Tl

Y. Y, s (9)

[Tt

with the constraints

2211,,&3, (t=1 T-1), {10)

p=1 1
i

Y 2.<0u  (t=1-T—1, p=1-n). (11)

1

In the OC plan the deliveries and prices are determined as the result of sclving one problem of optimal
matched planning which is distinguished from the problem of (9)-(11) by supplementary conditions of complete
matching [1]. These conditions reflect the interest of the customer in contributing to the delivery schedules.
By virtue of the condition of complete matching, each customer obtains 2 matched shipment plan, i.e., a plan
providing a minimum of the preference function

T

Vo= Y {citort por Qo= Vo 1 Q= V1) (12)

[~ ]
on the set of possible plans, determined by conditions (11). We remark that the coefficient #pt in (12) is the
estimate of Sy¢, while the order Qpt is the estimate of the desirable shipment Rp¢ {in particular, when f,¢ = Bpt
and Qot= Rpt {12) coincides with (5)). Since thEth’ then the condition of & minimum of (12) under constraints
(11), is equivalent to the condition of a minimum of

-1 :
E (ei—Sa—Cr)itpe ‘ (13}

(L3}

with the same constraints.

We turn now to the investigation of the functioning of the systems with RC and OC laws from the position
of game theory. The strategies of the players (customers) in the given case are shipment graphs Q, = {th}
communicated to the supplier and, if possible, the loss coeifficients B, = {Ppt }, if communication of these coef-
ficients is provided for in the scheme for system operation. The collection of the strategies @ = {Qp} {and,
possibly, # = {#p}) defines the game situation. We first consider the RC law and, thereafter, the OC law.

3. Analysis of Rigid Control Laws

We shall assume that ¢t = cy (wholesale price of the product) for any interval. We initially consider the
T—1

case when the loss coefficient 3, = {ﬁpf} of theuser are knowntothe supplier, where p,=f,5,,= Z Box = For (t=1-T—1).
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Moreover, let Spt = ﬂp+1,-,- for allt, 7, p =1, n— 1. In this case, it is not difficult to show that an optimal solu-
tion to the problem of (9)-{11) can be obtained by using a simple rule of customer priority: Products are
shipped to customers in the order of their increasing ordinal numbers (i.e., one initjally determines the ship-
ment graph for the first customer, then for the second, etc.). The following theorem is true.

Theorem 1. The strategy Qp = Rp is absolutely optimal for any customer.

Proof. By the definition of an absolutely optimal strategy, it is necessary to prove that Ry is an optimal
strategy for customer ¢ under any strategies of the other customers. For the first customer, having the highest
priority, this is obvious (we assume that Ryt < By for all p and t). Let p'> 1. We take Q¢ =0 for all p<p". In
this situation, Q' = Ryt is the optimal strategy for customer p'. We can easily show analogously that Ryt is an
optimal strategy in any other situation. Consequently, Rp' is an absolutely optimal strategy.

Corollary 1. if we take into account of losses on storage of superfluous products, the strategy Qp =Rp Is
the unique absolutely optimal strategy for any customer.

Proof. The preof to Corollaryl follows from Theorem 1.

Thus, if the loss coefficients are such that there exists an ordering of the customers in the aforementioned
sense, then the RC law provides optimality for the shipping plan without the introduction of auxiliary "urgency
charges." If there is no such ordering, then the absclutely optimal strategy for each customer is Qpt= Rpt
(t = 1, T}, which corresponds to overstatement of the urgency (the losses on storage of superfluous products are
not taken into account in the given case). It is clear that, in this case, the RC law does not even provide for
optimality of the shipment plan of finished products.

We now consider the case when the loss coefficients {8pt} are unknown to the supplier while the estimates
{up& of these coefficients are communicated by the customers. It is intuitively clear that, in this case, the
customers will overstate the importance of urgent shipment of the products {communicate overstated values of
f‘pt) and, correspondingly, will overstate the orders for shipment at earlier intervals.

Thus, the RC law, in the general case, does not solve the problems of designing optimal shipment plans.

4. Analysis of Open Control Law

We assume that the graph of Rp is known to the supplier, while the loss coefficients 8, are unknown. In
an OC law the prices ci are not fixed, but are determined, along with the shipment plan, as the result of having
solved the problem of matched planning. Consequently, the vector of prices depends on situation s, i.e., on the
collections of communicated estimates {spt}. However, with a sufficiently large number of customers, it is
natural to believe that the effect of the estimates s, of the individual customers on prices c will be insignifi-
cant. This makes plausible the following hypothesis of weak effect {WE): The customers do not take into ac-
count the influence of the communicated estimates on prices ¢;. Initially, we make concrete the procedure for
developing the prices. For this, we consider the problem, dual to that of (9)-(11), after having defined the dual
variables A¢= 0, mpg Z 0 (t =1-T—1, P = 1-n):

»

. 2 x8+ Y En,,}?,( — min ‘ (14)

= paml demi

under the conditions

T=1 =1

21.+ Zx.,,asm (p=1-n,1=1-T—1). S (18)

Tomt Teml

b St | T=1 :
We use the notation X =c,—cr, Hpe==8,, (=1 -T—1). In the variables c;— cT and f,¢ the conditions
t pt

i [}

of (15) agsume a simpler form:
(e—cr) +8=s50 {p=1-n, t=£-T—1), (18)
" We now write the conditions relaxing the rigidity:

(Bpte—er—su)uu=0 {(p=1-n,t=1-T-1), . an
(Ro— Vo) #a=0 {p=1-n,t=1-T-1), : (18}
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(B,— ivp, ) 2=0  (t=1=T—1), (19)
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We mention that conditions (17) and (18), written for customer p, are the relations for rigidity relaxation
for the problem of (11), (13) with the appropriate notation for the dual variables. Therefore, the selection for
prices cy with optimal values of the corresponding variables of the dual problem of (14), (15) is automatically
reduced to the meeting of the conditions of complete matching (11), (13). We shall henceforth assume that

it

o= ZZ‘°+c,, where JT7° is the optimal value of the corresponding variables of the dual problem of (14) and (15).
&

We set o = cw (the wholesale price of the products). We mention that, from the condition of nonnegativeness of
At (t =1, T—1}, it follows that ¢;= ¢; = c3= .., ZeT. Thus, the procedure for formulating shipment and price
schedules is determined (if the solutions of the direct and dual problems are nonunique, the choice is then
arbitrary). We turn now to the investigation of the equilibrium situation under the WE hypothesis. Sufficient
conditions for equilibrium for customer p under the WE hypothesis have the form

=i T=i

Z u,,.' (CL—CW—TN) =min E Wae (Ci_cw‘—rp!) (20)
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with the conditions 2 B SRy (t= 1=T —1).
1

Remark. Eguilibrium situations may exist for which (20} does not hold. However, these situations are
unstable, in the sense that the customers for whom (20} is violated will attempt to improve their positions. At
the same time, the situations in which (20) is met for all customers are stable since, for each customer, there
is guaranteed a minimum of this objective function under the WE hypothesis. We shall henceforth consider
equilibrium: situations which are stable in the aforementioned sense. An example of such a situation is s =1,
t.e., communication by all the customers of plausible estimates.

Theorem 2. Any equilibrium situation correspondsto anoptimal plan of product shipment.

Proof. We write the relationships for relaxed rigidity for problem (20), after having denoted the dual
T—1
variables as wun=0, §uu= Y ¥
2

(8p1+f-'r—f-'w o) p=0 (p=1a-n, t=1-T—1),

{RDE_VM]”N‘“U {p=1=n, t=1-T—1).

After having added to these conditions (19) which are met in any situation, we obtain the relationships for
relaxed rigidity for the problem of (9)-(11), where s = 4 and Q = R, which are necessary and sufficient for opti-
mality of equilibrium of the shipping plan. Theorem 2 is proven,

Theorem 2 also remains valid in the case when the customer strategy is the communication of orders Qp
or orders and estimates (Qp, sp). Indeed, conditions (20) remain equilibrium conditions even for these cases.

Remark., 1t has already been mentioned that there may be several equilibrium situations. In particular,
all situations of the form spt = rpt + 9p (qp is any number, p = 1, 1, t =1, T—1) are equilibrium situations. From
the point of view of the customer they are all equivalent. Therefore, with account taken of weak penalties on the
communication of implausible estimates, one can assume that s* = r is the unique equilibrium situation.

We now investigate the OC law from the position of maximal guaranteed result.
Theorem 3. Any strategy sp =S rj is a guaranteeing one.

Proof. We denote by P the set of t such that upt > 0. By virtue of the matching conditions, cg=cy + spt
for all t€P. In the least favorable case it is obvious that ¢y = ¢y + 8p¢ for all t€ P. With this the guaranteed re-
sult equals the maximum of the quantity

{pe—rps) upe
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under conditions (11) and is minimal when spt = rpt, t€ P. Since any interval can belong to P, thensp<r,isa
guaranteeing strategy. The maximal guaranteed result equals ¢. As in the case of equilibrium situations with
penalties on discordant information taken into account, we can assume that rp is the unique guaranteeing strat-
egy. It remains to prove that there exist strategies of the other customers, such as ct = cy + spt for all t. For
thig, it is sufficient to set Sq = Sp for all q #p. Theorem 3 is proven.

5. The Weak-Effect Hypothesis

In investigating equilibrium situations, it was assumed that the customersa do not take into account the ef-
fect of the communicated estimates iy on prices ¢t (the hypothesis of weak effect). We now investigate the
plausibility of this hypothesis. We restrict ourselves to the case when T = 2 (for example, annual planning with
subdivisions into half-years). We denote by 8(A;) the set of o such that K, >A|, and we construct the graph

R(L.):Zﬂm for p€ (A} (Fig. 1). We note that 6(A;} is the set of customers wishing to obtain products in the

first interval with an increase of the price A,, while R(3,) is the total of the orders of these customers., Obvious-
ly, the increase of A; under the OC law is determined from the condition R(»|) = B, (cf. Figs, 1 and 2). We add
one further customer and consider now A; will change as estimate up+,,, varies from zero to the maximal value
{the dashed line on Fig. 1). This changes depends, as is easily seen, on order Rpy, and on the "speed of de-
crease” of R(A,} and A, increases. On Fig. 2 we smooth the curve for R(A)). It is clear that &4 =K «Rpyy,

where K is the tangent of angle ~. For example, let the loss coefficients pp be uniformly distributed in the in-

terval of all possible values, i.e., K = H/R (R =Zl Ry, H=pu-p, = cf.Fig.2). In this case A4, mH-RnH,]/R. and

p=1

the hypothesis of weak effect is sufficiently likely if the "weight" of the order of one customer is small in com-
parison with the total of all orders R (the absence of a "monopoly” customers). On Fig. 3 we show the example
when the weight of the order of an individual customer is small but its effect on the price is significant, This
is related to the fact that the other customers fall into two groups with significantly diverse loss coefficients,
Finally, on Fig. 4, we show the example of the absence of effect of an individual customer on 2|, when all the
customers are identical.



Conclusions

Our investigation allows us to recommend the following operating mechanism in a "supplier— customer"”
system. The customers are unified into priority groups with essentially diverse loss coefficients in the diverse
groups and with similar coefficients within any one of the groups. Distribution of products among the groups is
performed in accordance with group priorities according to the principle of rigid centralization. Distribution
of products among customers of one group is performed according to the principle of open control. With this,
by virtue of the closeness of the loss coefficients of the customers of one group, it is possible to adopt the hy-
pothesis of weak effect for a sufficiently large number of customers (on the order of five or more, as shownby
experiments on business games). However, in equilibrium situations, the WE hypothesis guarantees an optimal
plan of shipment (according to Theorem 2) and plausibility of the communicated information.
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