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ABSTRACT 

Recently developed computer-aided design (CAD) tools 

automate design of rational hierarchical user menu 

structures. Proper choice of the optimization criterion is the 

key factor of success for such a CAD tool. We suggest user 

preference share as a novel metric of menu layout 

performance. It has clear economic grounds and is sound 

for management. We show how the preference share of a 

menu layout can be evaluated from laboratory experiments 

and predicted using the experimental menu navigation time 

and menu layout characteristics. Although navigation time 

is the most important factor, sometimes the faster does not 

mean the better. The logical compliance of a menu is also 

valuable for users.  

Author Keywords 

Menu-driven system; hierarchical menu optimization; 

optimization criterion identification; user experience; menu 

testing and assessment.  

ACM Classification Keywords 

H.5.2. Information interfaces and presentation (e.g., HCI): 

User Interfaces. 

INTRODUCTION 
Hierarchical command menus have long history but they 

are still an essential UI element for any computer software 

like 30 years ago. A menu is the first element seen by a user 

on the display of a novel smartphone or a public terminal.  

Since early 1980s methods for automated design of 

hierarchical user menus were a valuable application of 

formal methods to human-computer interaction. Recently 

several computer-aided design (CAD) tools [3, 11, 13, 14, 

19, 27, 28] were proposed. They employ combinatory 

algorithms to efficiently optimize various metrics of 

hierarchical menu performance. However, there is still no 

common agreement on what a good menu is or which 

performance metric should be optimized: predicted user 

navigation time [11, 13, 14, 20], a mixture of performance 

(navigation time) and consistency (logic) [3] or some 

synthetic metrics [27, 28]. 

There are many obstacles on the way of adopting user menu 

CAD tools by designers. In particular, it is hard to prove the 

optimized design to outperform the others [25]. Most 

performance metrics are not sound for managers who 

operate in terms of added value and return: the gain in 

navigation time does not answer the question how many 

customers will prefer this product to the competing one. 

We propose the preference share (the share of the user 

population preferring the considered menu layout to the 

competing one) as an optimization criterion for hierarchical 

menu optimization tools. The preference share is related to 

menu layout attributes and performance metrics (navigation 

time) in a series of experiments with students. We show 

that the preference is affected primarily by the navigation 

time but also by structural attributes and logical compliance 

of a pair of compared menus. In conclusion, implications to 

menu optimization are outlined together with open issues 

and perspectives. 

LITERATURE REVIEW 

Our research is related to several lines of HCI literature: 

automated UI design, predictive models of user behavior, 

user menu performance and user experience studies, 

organizational problems of HCI.  

To reduce menu design to the optimization problem one 

needs a predictive model of menu performance. 

Traditionally, the key performance metric was the target 

item selection time [20]. Earlier models [7, 17, 20, 22] 

accounted only for the menu breadth and item position, 

labels’ size and popularity, alphabetic sorting. SDP model 

[9] (and its extension [10] to scrolling and hierarchical 

menus) also incorporated expert behavior via decision time 

according to Hick-Hyman Law and pointing time according 

to Fitts’ Law. The recent model [4] employs the gaze 

distribution to predict behavior in linear menus. 

Starting from [6], the concept of semantic similarity of a 

search item to the other items on a panel (originated from 

[23]) is accounted in navigation time prediction. The recent 

model [8] of this sort explains the observed menu search 

behavior as a result of a reinforcement learning process. 

Menu design should take into account semantics of menu 

items to avoid senseless item groupings and unsound panel 

titles. Nevertheless, advanced semantics-aware predictive 

models of navigation time are rarely used directly in the 

literature. The criterion in [3, 19] bases on the SDP model 

from [9] with a correction term added to favor good label 

compliance. A similar approach is adopted in [27], except 

that a synthetic metric is used instead of the navigation 

time. The choice of summand weights is not justified. 



Consistency is an optimization constraint in [13] and [14], 

i.e., a simple navigation time predictor (serial search time in 

[13] or a more general expression in [14]) is minimized on 

a constrained feasible set limited only to semantically 

consistent menu layouts. In [11] authors minimize the 

navigation time affected by semantic quality of menu items. 

Recent progress in menu optimization is summarized in [5]. 

Different algorithms were suggested to select an optimal (or 

nearly optimal) menu layout: exhaustive enumeration in 

[13], genetic meta-heuristics in [19, 27], linear genetic 

algorithms in [28], combination of greedy hill-climbing and 

ant colony optimization in [3], a greedy heuristics of 

guaranteed quality in [11, 14]. So, a good approximation to 

optimal menu layout can be calculated in reasonable time. 

We propose a user experience-based metric of menu 

quality. Measuring user perception of hierarchical menus 

has long tradition.  Influence of menu depth and breadth 

onto subjective preferences [16] and onto subjective 

perception of task complexity [15] were studied. Later the 

menu type was related to performance and preference [18, 

21]. Many experimental studies relate user performance 

(time and accuracy) to personal abilities (with age being the 

main factor) [2] but difference in subjective perception as a 

function of personal abilities is less studied. 

It is commonly understood that “…the primary task for 

menu designers is to create a sensible, comprehensible, 

memorable and convenient semantic organization…” [26]. 

For instance, menu item content is known to affect accuracy 

rather than navigation time [1], clear labels and functional 

groupings are known to affect user perception of a menu, 

but, to our experience, the direct effect of semantic effects 

on user preference has never been distinguished from the 

indirect effect (good semantics enhances navigation time 

[8] which, in turn, affects user subjective perception).  

We follow [23] in proposing performance metrics that 

reflect the value added by the technology and relate user 

preferences to attributes of hierarchical menu structure and 

content both directly and indirectly (through their effect to 

performance metrics, e.g., navigation time and accuracy.)  

PREFERENCE SHARE AS OPTIMIZATION CRITERION 

A good hierarchical menu design is the one preferred by 

users, i.e., by customers who buy a product the menu being 

the part of. So, a relevant criterion for menu optimization 

should be based on user experience. A product is typically 

designed for some population of users (the target audience), 

and hence, a product should be designed to maximize the 

preference share, i.e., to be preferred by as many users in 

the population as possible.  

This means that the prospective menu layout should not be 

evaluated per se, but in comparison with alternative layouts 

forming the context. For example, a manually designed 

layout can be a good competing alternative when a new 

menu is designed. If the menu enhancement process is 

considered, the existing menu layout can be chosen as a 

baseline for comparison. If an obvious competing design 

exists, one should design a new menu layout that will be 

preferred to the competitor’s menu layout. 

To calculate the preference share P(x, y) of menu layout x 

to menu layout y (i.e., the fraction of user population 

preferring x to y) one needs to relate it to the measurable 

attributes of the user population and of both menu layouts.  

A user population can be split into representative classes 

c ∈ C (popular user audiences, e.g. adults, novices, disabled 

persons, etc.) Then the preference share of menu layout x to 

menu layout y is calculated as P(x, y)=∑c∈CP
c
(x, y)⋅Vol(c), 

the sum of preference shares P
c
(x, y) of all classes c ∈ C 

weighted by Vol(c), normalized volumes of classes in the 

population (so that ∑c∈CVol(c) = 1).  

The preference share P
c
(x, y) of user class c adds up from 

preferences of its members. Consider a user i ∈ c. His or her 

preferences of menu layout x to menu layout y are modeled 

with a number Pi(x, y) being equal to unity if he or she 

prefers x to y, and equal to zero otherwise (set Pi(x, y) = 0.5 

in case of indifference). Then P
c
(x, y) = ∑i∈c Pi(x, y) / #(c), 

where #(c) is user count in class c. 

Individual preferences are driven by five major groups of 

factors (or variables). 1) User personal characteristics fix 

the character, computer skills, cognitive, or motor abilities; 

2) Structure characterizes the hierarchy of compared menus 

(their breadth, depth, labels’ consistency, etc.); 3) Menu 

design or appearance of compared menus (linear, iconic, or 

split menus, labels’ size and color, etc.); 4) Ecology of 

menu usage explains the context (time pressure, 

repetitiveness of tasks, learning time, price of the error); 5) 

Performance metrics reflect the evidence of menu usage – 

the selection time, accuracy, menu cancellations, etc. The 

first four groups are independent, while performance 

metrics can be predicted (see the thin arrows in Figure 1).  

Preferences of each class of users are elicited from 

experiments. Our experiments are limited to the available 

audience (undergraduate and off-campus students), but in 

the future representative classes should be chosen to 

support menu design focused on particular user groups. 

Below we fix the user population, menu design and 

ecology, so preference shares are predicted from menu 

structure variables and aggregated performance metrics. 



 

Figure 1. Factors affecting user preference of menu layout x to 

y. Dashed lines mean that the effect groups of factors 1-4 on 

the preferences cannot be mediated by performance metrics. 

EXPERIMENT 

Our experimental setup is similar to that of [16]. Subjects 

assess hierarchical menus solving standard tasks of finding 

a metal-working tool with a sequence of choices of its 

features on menu panels. The features include the tool name 

(drill, mill, cutter), manufacturer (YG-1, Dijet, QCT, 

Hammond, HAM, Carmex), length (shorten, normal, long), 

the diameter (micro, mini, small, normal, big, extra), the 

use (rough cut, finishing, uncooled cut), the material 

(carbide, high-speed steel, replaceable insert). A task 

definition presented to users combines exact, iconic, and 

synonymic stimuli (see Figure 2). 

We use a rather complex (yet, realistic) environment based 

on the standard Delphi GUI. Tool features are distributed to 

menu levels (see example in Figure 3). Ten distinct menu 

layouts were prepared with widely varying breadth and 

depth, breadth distribution by levels, and order of feature 

selection (see Table 1).  

 

Figure 2. Task definition: exact, synonymic and iconic stimuli. 

 

  

Figure 3. The Menu 1 (translated). 

Menu 

No 

Level 

No 
Features 

Menu 

breadth 

1 1 Tool name 3 

2 Material 3 

3 Length 3 

4 Diameter 6 

5 Manufacturer + Use 2 

2 1 Manufacturer 6 

2 Diameter 6 

3 Name + Material + Length + Use 9 

3 1 Tool name + Use 9 

2 Manufacturer 6 

3 Material + Length + Diameter 6 

4 1 Manufacturer 6 

2 Material + Length 9 

3 Diameter + Tool name + Use 6 

5 1 Tool name 3 

2 Manufacturer 6 

3 Material 3 

4 Length + Use + Diameter 6 

6 1 Diameter 6 

2 Use 3 

3 Material 3 

4 Tool name 3 

5 Length + Manufacturer 2 

7 

1 

Tool name: Drills & Cutters – 

see Menu 1 3 

Tool name: Mills – see Menu 5 

8 

1 

Manufact.: YG-1, QCT, Ham-

mond – see Menu 4 
6 

Manufact.: Diget, HAM, Carmex 

– see Menu 2 

9 

1 

Tool name: Drills & Cutters – 

see Menu 1 5 

"Mills" + Use (3 items) 

2 Manufacturer 6 

3 Material + Length + Diameter 6 

10 
1 

Mills – see Menu 5 
7 

Diameter 

2 Use 3 

3 Material 3 

4 Tool name 2 

5 Length + Manufacturer 2 

Table 1. Specification of menu layouts assessed. 

The logic of some menus was intentionally injured in 

various ways. Many panels join two or more features (e.g., 

the menu item is “Carmex, finishing”.) Menus 1-6 are 

symmetric (i.e., the order of feature selection is the same for 

all target items) while menus 7-10 are skewed (menu 7 

inherits the structure of Menu 1 for drills and cutters and 

the structure of Menu 5 for mills, menu 8 inherits the 

structure of Menu 1 for drills and cutters and the structure 

of Menu 5 for mills). The top panel in menus 9 and 10 is 

combined, it suffers from mixed logic: in Menu 9 two out of 

5 items are tool names, Drills and Cutters, while the rest 

three items are Mills joined to the tool use; in Menu 10 six 

diameter items are equipped with Mills (see Figure 4a.) The 



hypothesis to be tested was that users dislike joined menu 

panels since the items are hard to read and dislike combined 

panels since they break the logic and cause errors. A real-

life example of mixed logic is the top menu of MS Word 

2010 (see Figure 4b): Insert and View are actions, File, 

References, and Mailings are objects, Review is a process. 

All menu layouts shared the same set of 324 target items.  

During the experiment a subject sequentially assesses 11 

menu layouts (one of 10 layouts from Table 1 is presented 

twice to estimate the effect of experience on user navigation 

time and preferences) with 2 min rest between the menus. 

In each menu a series of search tasks is performed. A task 

picture is displayed for 30 sec, and then the next of 12 tasks 

is displayed in a cycle (tasks were chosen to cover 

uniformly the paths in a menu.) User actions (mouse and 

keyboard) are logged each 10 msec. After 5 min of task 

execution the usability score from –5 (the worst) to 5 (the 

best) is assigned to the menu. In the end of the experiment 

the subjects write informal comments explaining the scores 

and providing their vision of an ideal menu. 

In Experiment I 48 volunteers (graduate students of the 

Engineering department) meet Menu 1 to 10, and then again 

Menu 1. In Experiment II 19 off-campus students (23-41 

y.o.) meet menus in another order (4, 3, 8, 2, 10, 7, 6, 1, 9, 

2, 5) to check robustness of preference prediction to menu 

presentation order.  

RESULTS 

Analyzing User Comments 

Semantic analysis is used to analyze user comments. 

General subjective menu characteristics found in comments 

are “handy”, “simple”, and “reasonable/ consistent” (70, 25, 

and 22 occurrences respectively). Other popular words 

characterize menu structure: order of feature selection is (37 

comments), depth (32 comments), breadth (26 times). 

Joined panels are criticized in 21 comments, combined 

panels are blamed 18 times, and 16 complaints concerned 

skewed menus (those having different order of feature 

selection in different submenus, like Menus 7 and 8). 

Natural sorting (e.g. alphabetic) was demanded 16 times.  

Only 10 comments noticed fast navigation and just 2 

comments disclosed selection errors as a valuable factor. 

We conclude that the effect of process variables (e.g., 

navigation time) is not realized by users. The results 

resemble those of the survey [3] of menu designers (e.g., 

“understandability” of a menu is the main design concern.) 

Analysis of the vision of an ideal menu shows that 30% 

subjects prefer deeper menus (6 hierarchical levels) to 

joining several features on a single panel. The rest 70% are 

ready to join two (or even more) features on a panel to keep 

the depth in the range from 3 to 4 levels. These results are 

in line with the common knowledge [7, 15, 16] that shallow 

menus are better in terms of performance and preference. 

Finally, most users find that the tool name and the 

manufacturer should be selected on the first two levels.  

Predicting Individual User Preferences 

We predict Pi(x, y), where i is the user, x and y are menu 

layouts. So, there are 5280 observations in Experiment I (11 

menus give 110 unique pairs for each of 48 subjects), and 

2090 observations in Experiment II (for 19 subjects). 

Menu structure is characterized with menu depth (# of 

hierarchical levels), menu breadth on level 1 to 5, # of 

joined panels, “skewed menu” dummy for menus 7-10, and 

“mixed logic panel” dummy for menus 9 and 10. The order 

of features’ presentation (which is important, according to 

user comments) is captured with the variables of the form 

“# of Feature” = “Panel level” + 0.25⋅(“Feature No on the 

joined panel” – 1). For instance, “# of Diameter” = 3 and 

“# of Use” = 4.25 in Figure 3.  

Since Pi(x, y) = 1 – Pi(y, x), the regression must be 

symmetric, and we employ tradeoffs [24] of menu structure 

characteristics as predicting variables. For instance, the 

breadth tradeoff ΔBreadth(x, y) := Breadth(x) – Breadth(y). 

For user i in menu x performance metrics include average 

task completion time ti(x), performed task count ni(x), 

average success rate (% of accomplished tasks) ri(x), and 

average time of successful task completion si(x). It is shown 

in [9] that navigation time depends crucially on user 

expertise. In Experiment I every user meets Menu 1 twice, 

in the beginning and in the end of the experiment, when 

users navigate 12% faster in average. To test the hypothesis 

that a subject makes allowance for his or her experience 

during menu assessment, the “net” performance metrics are 

built by applying a linear transformation so that the “net 

task completion time” nti in Menu 1 is equal to that in 

Menu 11. The tradeoffs of performance metrics and their 

“net” analogues are also used as predictors. 

User characteristics are captured with 35 variables obtained 

from psychophysiological tests (Eysenck personality, 

Ravena IQ, Landolt rings, numbers memorizing) executed 

after Experiment I. These variables appear less significant 

(in a binary classification tree they appear only at Level 5) 

so we skip further details. 

If individual preferences could be predicted with objective 

user characteristics, the preference share would be 

constructed for any user class and, hence, for any target 

audience with no additional experiments.  

a)  

b)   

Figure 4. Examples of menu panels with mixed logic. 



We tried several popular classification techniques (k-nearest 

neighbors, naïve Bayes, logistic regression, support vector 

machine, and random forest classifier) but, unfortunately, 

the accuracy is unsatisfactory: logistic regression with L1 

regularization wins with Mean area under ROC curve 0.72 

(Mean precision 0.75 and recall 0.79) for 1:1 random sub-

sampling cross-validation. We can only conclude that user 

preferences are determined not only by performance 

metrics: menu structure and user characteristics are also 

significant. So, dashed lines in Figure 2 do exist. 

Predicting Preference Share 

Introduce the new predicting variables. For user i and a pair 

of menus x and y dominance of task completion time is 

defined as Di
t
(x, y) ≔ sign(ti(x) – ti(y)). Dominance of the 

other performance metrics is defined in the same fashion.  

The preference share P(x, y) is calculated by averaging 

individual preferences over subjects and is predicted with a 

linear regression using tradeoffs and dominances of 

performance metrics (also averaged over subjects) and 

menu structure tradeoffs as predictors. Each dataset gives 

110 observations (unique pairs of 11 menus). Only a half of 

observations are independent, so regression accuracy 

figures are adjusted to real sample size. 

To exclude insignificant, noisy, and collinear variables and 

to avoid overfitting the following variable selection 

procedure is used. Ten random subsets of participants of 

Experiment I are picked (each containing approximately a 

half of subjects.) For each group of subjects the preference 

share is calculated and predicted using the stepping method 

of variable selection based on the Fisher statistics [12]: the 

variable with the lowest probability of F is included in the 

regression if the probability of F is less than 0.05 and the 

variable is excluded if its probability of F becomes more 

than 0.10. A variable is included in the final list (see Table 

2) if it is met in at least a half of ten “partial” regressions.  

The linear regression with predicting variables presented in 

Table 2 gives average correlation 0.95 (mean absolute error, 

MAE = 0.064) on the training set and average correlation 

0.90 (MAE = 0.097) on the testing set for 1:1 random sub-

sampling cross-validation. 

Variable Coefficient 

(Constant)   0.500 

Dominance of successful task completion time Ds –0.313 

Dominance of success rate Dr 0.096 

 “Skewed menu” dummy tradeoff –0.102 

“Mixed logic” dummy tradeoff –0.125 

# of joined panels tradeoff 0.006 

Breadth of the 1st level panel tradeoff –0.033 

Table 2. Optimal regression variables and coefficients for 

preference share prediction using Experiment I data. 

To check robustness of prediction with respect to audience 

and menu presentation order data from Experiment II are 

used as the testing set and preference shares averaged over 

all participants of Experiment I are used as a training set. 

Correlation 0.97 with MAE = 0.055 is obtained on the 

training set for coefficients presented in Table 2 and 

correlation 0.84 with MAE = 0.101 is obtained on the 

testing set (cross-validation on the data of Experiment I 

gives similar accuracy). Figure 5 shows the scattering plot. 

 

Figure 5. Prediction accuracy of preference share data: 

Experiment I is used for training and Experiment II for testing. 

CONCLUSION 

We proposed a new metric of hierarchic menu performance: 

the preference share of a menu layout to a competing 

layout. Using preference share as an optimization criterion 

in CAD systems for menu design automation should fill the 

gap between the traditional approach to menu performance 

and the logic of product lifecycle management. 

Preference share can be accurately predicted from menu 

performance and structure variables (see Table 2), but 

performance metrics alone are not enough. From Table 2 it 

follows that successful task completion time is responsible 

for ≈30% of preference share variation (“net” time is not as 

informative: users do not make allowance for their 

experience and charge longer navigation time to menu 

imperfectness.) Accuracy (dominance of success rate) is 

also an important factor responsible for 10% of preference 

share variation. Skewedness of a menu and mixed logic 

decreases the preference share by ≈10%. So, we can expect 

that if mixed logic was avoided in the main menu of MS 

Word (see Figure 4b), up to 10% of users would prefer this 

menu to the current one (ceteris paribus).  

Although logical compliance of a menu appears more 

important than “geometry” (breadth or depth), valuable 

structure variables can, in principle, be calculated for any 

menu layout. But to use our results in menu optimization 

tools a predictive model is needed for the dominance of 

successful task completion time and that of success rate.  

Probably the most promising approach, which can be the 

subject of future research, assumes using contemporary 

predictive models of navigation time [4, 8] to predict 

individual navigation time for a variety of user 



characteristics in a population, and then calculating the 

dominance by averaging individual contributions. 
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