УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ
на главную написать письмо карта сайта

ѕоиск в базе данных публикаций по теории управлени€ организационными системами



јвтор:  Goubko M. V., Kuznetsov S. O., Neznanov A. A., Ignatov D. I.
Ќазвание:  Bayesian Learning of Consumer Preferences for Residential Demand Response
—татус:  опубликовано
»здательство (дл€ книг и брошюр):  Elsevier Ltd.
√од:  2016
“ип публикации:  доклад
Ќазвание журнала или конференции:  IFAC-PapersOnLine, Cyber-Physical & Human-Systems CPHS 2016
Ќомер (том) журнала:  V. 49, No 32
ѕолна€ библиографическа€ ссылка:  Goubko M. V., Kuznetsov S. O., Neznanov A. A., Ignatov D. I. Bayesian Learning of Consumer Preferences for Residential Demand Response / IFAC-PapersOnLine, 2016, V. 49, No 32. Cyber-Physical & Human-Systems CPHS 2016 Conference, P. 24-29.
јннотаци€:  In coming years residential consumers will face real-time electricity tariffs with energy prices varying day to day, and effective energy saving will require automation - a recommender system, which learns consumer's preferences from her actions. A consumer chooses a scenario of home appliance use to balance her comfort level and the energy bill. We propose a Bayesian learning algorithm to estimate the comfort level function from the history of appliance use. In numeric experiments with datasets generated from a simulation model of a consumer interacting with small home appliances the algorithm outperforms popular regression analysis tools. Our approach can be extended to control an air heating and conditioning system, which is responsible for up to half of a household's energy bill.

at ScienceDirect (full text available)

ѕросмотров: 520, загрузок: 80, за мес€ц: 7.

Ќазад

»ѕ” –јЌ © 2007. ¬се права защищены