на главную написать письмо карта сайта

јвтор:  Border K C, Jordan J S
Ќазвание:  Straightforward elections, unanimity and phantom voters
—татус:  опубликовано
√од:  1983
“ип публикации:  стать€
Ќазвание журнала или конференции:  Review of Economic Studies
Ќомер (том) журнала:  1
“ом:  Vol. 50
ѕолна€ библиографическа€ ссылка:  Border K., Jordan J.S. Straightforward elections, unanimity and phantom voters // Review of Economic Studies. 1983. Vol. 50. N 1. P. 153 Ц 170.
јннотаци€:  Non-manipulable direct revelation social choice functions are characterized for societies where the space of alternatives is a euclidean space and all voters have separable star-shaped preferences with a global optimum. If a non-manipulable choice function satisfies a weak unanmity-respecting condition (which is equivalent to having an unrestricted range) then it will depend only on voters' ideal points. Further, such a choice function will decompose into a product of one-dimensional mechanisms in the sense that each coordinate of the chosen point depends only on the respective coordinate of the voters' ideal points. Each coordinate function will also be non-manipulable and respect unanimity. Such one-dimensional mechanisms are uncompromising in the sense that voters cannot take an extreme position to influence the choice to their advantage. Two characterizations of uncompromising choice functions are presented. One is in terms of a continuity condition, the other in terms of \phantom voters\, i.e. those points which are chosen which are not any voter's ideal point. There are many such mechanisms which are not dictatorial. However, if differentiability is required of the choice function, this forces it to be either constant or dictatorial. In the multidimensional case, non-separability of preferences leads to dictatorship, even if preferences are restricted to be quadratic.
ѕредмет управлени€:  ÷елевые функции (мотивационное управление)
–асширени€ базовой модели:  —ообщение информации
ѕредметные области и задачи управлени€:  ѕрин€тие решений / Ёкспертиза

ѕолный текст: —качать ()

ѕросмотров: 8252, загрузок: 718, за мес€ц: 5.


»ѕ” –јЌ © 2007. ¬се права защищены